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ABSTRACT
Neural models for calculating the resonant frequency of
electrically thin and thick circular microstrip antennas,
based on the multilayered perceptrons and the radial basis
function networks, are presented. Five learning algorithms,
delta-bar-delta, extended delta-bar-delta, quick-propagation,
directed random search and genetic algorithms, are used to
train the multilayered perceptrons. The radial basis function
network is trained according to its learning strategy. The
resonant frequency results obtained by using neural models
are in very good agreement with the experimental results
available in the literature.

I. INTRODUCTION
Accurate determination of resonant frequency is important
in the design of microstrip antennas (MSAs) because they
have narrow bandwidths and can only operate effectively
in the vicinity of the resonant frequency. Several methods
[1-14] varying in accuracy and computational effort have
been presented and used to determine the resonant
frequency of circular patch antenna, as this is one of the
most popular and convenient shapes. However, most of
the previous theoretical and experimental work has been
carried out only with electrically thin MSAs, normally of
the order of h/λd ≤ 0.02, where h is the thickness of the
dielectric substrate and λd is the wavelength in the
substrate. Recent interest has developed in radiators
etched on electrically thick substrates. This interest is
primarily for two major reasons. First, as these antennas
are used for applications with increasingly higher
operating frequencies, and consequently shorter
wavelength, even antennas with physically thin substrates
become thick when compared to a certain wavelength.
Second, the bandwidth of the circular microstrip antenna
is typically very small for low profile, electrically thin
configurations. One of the techniques to increase the
bandwidth is to increase the thickness proportionately.
The design of microstrip antenna elements having wider
bandwidth is an area of major interest in microstrip

antenna technology, particularly in the fields of electronic
warfare, communication systems and wideband radars.
Consequently, this problem, particularly the resonant
frequency aspect, has received considerable attention.

In this study, models based on artificial neural networks
(ANNs) are presented for the resonant frequencies of both
electrically thin and thick circular microstrip antennas.
Ability and adaptability to learn, generalizability, smaller
information requirement, fast real-time operation, and
ease of implementation features have made ANNs popular
in the last few years [15-25]. Because of these fascinating
features, artificial neural networks in this article are used
to model the relationship between the parameters of the
microstrip antenna and the measured resonant frequency
results.

In previous works [13,20-24], we also successfully
introduced ANNs to compute the various parameters of
the triangular, rectangular and circular MSAs.  In these
works, only the multilayered perceptrons (MLPs) were
used as the neural network architecture. However, in this
paper, both the MLPs and the radial basis function
networks (RBFNs) are used for calculating the resonant
frequency. Furthermore, in the most of our previous
works, only the backpropagation algorithm was employed
to train the MLPs. However, in this study the five learning
algorithms, the delta-bar-delta (DBD), the quick
propagation (QP), the extended delta-bar-delta (EDBD),
the directed random search (DRS), and the genetic
algorithms (GA), are used to train the MLPs.

II. RESONANT FREQUENCY OF A CIRCULAR
MICROSTRIP ANTENNA

Consider a circular patch of radius a over a ground plane
with a substrate of thickness h and a relative dielectric
constant εr, as shown in Fig. 1. The resonant frequency of
a circular disc MSA for the TMnm mode is given by
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where αnm is the mth zero of the derivative of the Bessel
function of order n and c is the velocity of
electromagnetic waves in free space. The dominant mode
is TM11 (n=m=1), for which α11 =1.84118. The TM11
mode of the circular microstrip patch is widely used in
MSA applications. Equation (1) is based on the
assumption of a perfect magnetic wall and neglects the
fringing fields at the open-end edge of the microstrip
patch. To account for these fringing fields, there were a
number of suggestions in the literature [1-14]. It is clear
from the studies presented in the literature [1-14] that the
resonant frequency of a circular microstrip antenna for
TM11 mode is determined by εr, a, and h.

III. ARTIFICIAL NEURAL NETWORKS
ANNs are biologically inspired computer programs
designed to simulate the way in which the human brain
processes information. Multilayered perceptrons (MLPs)
[15,25] are the simplest and therefore most commonly
used neural network architectures. MLPs can be trained
using many different learning algorithms [15-19, 26-30].
In this work, MLPs are trained with the use of DBD,
EDBD, QP, DRS and GA algorithms.

The DBD algorithm [18] is a heuristic approach to
improve the speed of convergence of the connection
weights in MLPs. Experimental studies suggest that each
dimension of the weight space may be quite different in
terms of the overall error surface. In order to account for
the variation of the error surface, specially, that every
connection of a network should have its own learning
coefficient. The idea is that the step size suitable for one
weight dimension may not be appropriate for all weight
dimensions. By assigning a learning coefficient to each
connection and permitting this learning coefficient to
change continuously overtime, more degrees of freedom
are introduced to reduce the time to convergence.  By
using past values of the gradient, heuristic can  be  applied

Figure 1. Geometry of circular microstrip antenna

to infer the curvature of the local error surface. With this
type information, intelligent steps can be taken in the
weight space using a number of straightforward
algorithms.

The EDBD algorithm [19] is an extension of the DBD
algorithm and based on decreasing the training time for
multilayered perceptrons. The use of the momentum
heuristics and avoiding the cause of the wild jumps in the
weights are the features of the algorithm. The EDBD
algorithm includes a little-used error recovery feature
which calculates the global error of the current epoch
during training. If the error measured during the current
epoch is greater than the error of the previous epoch, then
the network’s weights revert back to the last set of the
weights produced the lower error. However, a patience
factor has been included into the error recovery feature,
which may produce the better performance of the
networks through the use of this feature.

The QP algorithm was developed by Fahlman [17] as a
new method of improving the rate of convergence in
multilayered perceptrons.

The GA [29] is a parallel, robust, and probabilistic search
technique that is simple and easily implemented without
gradient calculation, compared with the conventional
gradient-based search procedure. Most important of all,
the genetic algorithm also provides a mechanism for
global search that is not easily trapped in local optima.
The advantage of applying GA to neural network training
is that there is scope for optimising the complete network
(the network configuration, activation function as well as
connection weights). However, the GA tends to be slower
in producing a solution as it has to handle several possible
solutions simultaneously.

The DRS [30] is a reinforcement learning approach and is
used to calculate the weights of MLPs. This algorithm
also tries to minimize the overall error. Random steps are
taken in the weights and a directed component is added to
the random step to enable an impetus to pursue previously
search directions. The DRS is based on four procedures as
random step, reversal step, directed procedure and self-
tuning variance.

An alternative network architecture to the MLP is the
RBF network [26-28]. In most general terms, a network
with an internal representation of hidden neurons, radially
symmetric, is named as a RBF network. The topology of
the RBF network is obviously similar to that of the three-
layered MLP, and the differences lie in the characteristics
of the hidden neurons. The construction of a radial basis
function network in its most basic form involves three
entirely different layers. The input layer is made up of
source neurons. The second layer is a hidden layer of high
dimension serving a different purpose from that in a MLP.
This layer consists of an array of neurons. Each neuron
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contains a parameter vector called a centre. The neuron
calculates the Euclidean distance between the centre and
the network input vector, and passes the result through a
non-linear function. The output layer is essentially a set of
linear combiners and supplies the response of the
network. The transformation from input layer to the
hidden layer is non-linear, whereas the transformation
from the hidden layer to the output layer is linear. The
output of an hidden layer is a function of the distance
between the input vector and the stored centre. Linear
regression, or a gradient descent algorithm is used to
determine the weights from the hidden layer to the output
layer. In this work, BP is used to train the weights of the
layer.

IV. NEURAL NETWORKS FOR THE RESONANT
FREQUENCY COMPUTATION

ANNs have been adapted for the calculation of the
resonant frequency (RF) of electrically thin and thick
circular MSAs. MLPs are trained with the use of DBD,
EDBD, QP, DRS and GA algorithms. RBFN is trained
according to its learning strategy [16,26-28]. For the
neural models, the inputs are a, h, and εr, and the output is
the measured resonant frequency fme.

In the MLP structure, input layer has the linear transfer
function and the hidden and output layers have the tangent
hyperbolic function. In the RBF the gaussian function was
used. Training an ANN with the use of a learning
algorithm to compute RF involves presenting it
sequentially with different sets (a, h, εr) and
corresponding measured values fme. Differences between
the target output fme and the actual output of the ANN are
evaluated by a learning algorithm. The adaptation is
carried out after the presentation of each set (a, h, εr) until
the calculation accuracy of the network is deemed
satisfactory according to some criterion (for example,
when the error between fme and the actual output for all
the training set falls below a given threshold) or the
maximum allowable number of epochs or generations is
reached.

The training and test data sets used in this paper have been
obtained from the previous experimental works [1-2,4-8],
and are given in Table 1. The 17 data sets in Table 1 were
used to train the networks. Only, 3 data sets that are
shown in boldface type in Table 1 were used for test
because of the limited experimental data available in the
literature.

After several trials, it was found that three hidden layers
network achieved the task in high accuracy except for
RBFN.  The number of neurons in the three hidden layers
and the iteration numbers are given in Table 2.  A set of
random values distributed uniformly between -0.1 and
+0.1 was used to initialize the weights of the networks.
However, the tuples were scaled between -1.0 and +1.0
for inputs and –0.8 and +0.8 for outputs before training.

The random and sequential training strategies are
followed.

The parameters of the networks are: for DBD, κ=0.01,
ϕ=0.5, θ=0.7, α=0.2; for EDBD, κα=0.095, κµ=0.01,
γµ=0.0, γα=0.0, ϕµ=0.01, ϕα=0.1, θ=0.7, λ=50; for QP,
δ=0.0, α=0.1, ε =1.0, µ=9.0; for RBF, the learning
coefficient was set to 0.15, and the momentum coefficient
was fixed to 0.4; for DRS, the weight bound is fixed to 15
and the variance is 0.0001; for GA, the individuals=50, the
mutation factor=4.0, the mutation probability=0.01, the
crossover probability increment =0.09 and the parental
biases=1.6. The meanings of the learning algorithm
parameters given above and detailed discussion of the
learning algorithms are available in the literature [15-
19,25-30].

V. RESULTS AND CONCLUSIONS
The resonant frequency results obtained by using neural
models for electrically thin and thick circular MSAs are
compared with the measured results in Table 1. The
training and test absolute errors, and total absolute errors
between the computed and experimental results in Table 1
for every neural model are also listed in Table 3.

When the performances of neural models are compared
with each other, the best results for training and test were
obtained from DBD and EDBD, respectively. In training
and testing, the worst result for was obtained from GA.
The highest accuracy in the total absolute errors was
achieved with the EDBD. When the two heuristic
approaches were compared with each other, the DRS was
found better than the GA. The standard DRS algorithm is
the simplest of the algorithms evaluated. Its
implementation only requires the selection of two
parameters, as opposed to four for DBD and QP, five for
GA, and eight for EDBD. In general, the need for
choosing large numbers of parameters in the algorithms
increases the possibility of incorrectly setting their values.
DBD was found the most successful ANN in training but
it failed in test. In conclusion, EDBD remains the
algorithm of choice for training and testing MLPs
although care must be paid to select the appropriate eight
parameters of the network for the design of MLP
structures for the given tasks.

In order to determine the most appropriate suggestion
given in the literature, the total absolute errors between
the experimental results and the theoretical results
obtained by using the other methods proposed in the
literature [2-4,7,9-12,14] for circular MSAs given in
Tables 1 are also listed in Table 4. When the results of
neural models are compared with the theoretical results of
other scientists, the results of MLPs trained by DBD,
EDBD, QP, and RBFN are better than those predicted by
other scientists. The good agreement between the
measured values and our computed resonant frequency
values supports the validity of the neural models.



Table 1. Comparison of measured and calculated resonant frequencies obtained by using neural models for electrically
thin and thick circular microstrip antennas.

Measured Present Neural Models
a h εr h/λd fme EDBD DBD QP DRS GA RBF

(cm) (cm) (MHz) (MHz) (MHz) (MHz) (MHz) (MHz) (MHz)

6.800 0.08000 2.32 0.003392 835□ 835 835 835 835 930 835
6.800 0.15900 2.32 0.006692 829□ 828 828 828 932 898 812
6.800 0.31800 2.32 0.013159 815□ 815 815 815 816 899 815
5.000 0.15900 2.32 0.009106 1128∆ 1128 1128 1126 1126 944 1129
3.800 0.15240 2.49 0.011567 1443∇ 1443 1443 1446 1443 1435 1440
4.850 0.31800 2.52 0.018493 1099x 1099 1099 1100 1098 1081 1099
3.493 0.15880 2.50 0.013140 1570♦ 1570 1570 1568 1572 1582 1572
1.270 0.07940 2.59 0.017336 4070♦ 4070 4070 4070 4070 4028 4070
3.493 0.31750 2.50 0.025268 1510♦ 1510 1510 1509 1510 1516 1510
4.950 0.23500 4.55 0.013785 825♦ 825 825 826 828 885 826
3.975 0.23500 4.55 0.017210 1030 1030 1030 1029 1024 1013 1029
2.990 0.23500 4.55 0.022724 1360 1361 1364 1357 1362 1198 1399
2.000 0.23500 4.55 0.033468 2003 2003 2003 2003 2007 1996 2004
1.040 0.23500 4.55 0.062659 3750 3750 3750 3750 3747 3751 3749
0.770 0.23500 4.55 0.082626 4945 4945 4945 4945 4947 4943 4946
1.150 0.15875 2.65 0.038118 4425† 4428 4425 4426 4413 4471 4427
1.070 0.15875 2.65 0.040684 4723† 4720 4723 4721 4732 4690 4719
0.960 0.15875 2.65 0.045006 5224† 5224 5232 5225 5261 5184 5230
0.740 0.15875 2.65 0.057146 6634† 6634 6634 6633 6617 6632 6630
0.820 0.15875 2.65 0.052300 6074† 6075 6074 6075 6094 6078 6080

□These frequencies measured by Dahele and Lee [5];∆this frequency measured by Dahele and Lee [6];∇  this frequency
measured by Carver [4]; x this frequency measured by Antoszkiewicz and Shafai [8];♦ these frequencies measured by
Howell [2]; † these frequencies measured by Itoh and Mittra [1]; the remainder measured by Abboud et al. [7].

Table 2. The neuron numbers in the hidden layers and the
iteration numbers.

The number of neurons in

ANNs
First

hidden
layer

Second
hidden
layer

Third
hidden
layer

Iteration number for
training (x1000)

EDBD 8 8 5 6 100
DBD 6 6 6 30 000
QP 6 6 6 25 000
DRS 5 5 5 1 000
GA 5 5 5 250
RBF 10 5 - 7 000

Table 3. Train, test and total absolute errors between the
measured and calculated resonant frequencies for various
neural networks.

ANNs Train absolute
errors (MHz)

Test absolute
errors (MHz)

Total absolute
errors (MHz)

EDBD 7 2 9
DBD 0 13 13
QP 16 5 21
DRS 82 142 224
GA 621 271 892
RBF 27 62 89

Table 4. Total absolute errors between the measured and
calculated resonant frequencies for the methods available
in the literature.

Methods [4] [2] [3] [7] [9] [10] [11] [12] [14]

Errors
(MHz)

965 3341 342 253 383 352 353 1047 207

A distinct advantage of neural computation is that, after
proper training, a neural network completely bypasses the
repeated use of complex iterative processes for new cases
presented to it. For engineering applications, the simple
models are very usable. Thus the neural models given in
this work can also be used for many engineering
applications and purposes.
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