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Abstract 
 

Synchronization of completely different chaotic systems via 
active controllers is investigated. Chaos synchronization 
using active controllers is generalized for different chaotic 
systems. Two completely different Lorenz and Rössler 
systems are considered for synchronization and numerical 
simulations are presented graphically to confirm the validity 
of the proposed method. 

 
1. Introduction 

 
Chaos is one of the most significant topics in nonlinear 

science, and has been intensively studying since the Lorenz 
system [1] was introduced. After many chaotic systems has been 
discovered and developed, scientists have focused on chaos 
control and chaos synchronization since 1990s. Chaos 
synchronization was discovered by Pecora and Carroll [2] and 
there has been great interest in it, and its applications, such as 
secure communication, and system identification. Given a 
chaotic system considered as a master system, and another 
identical system considered as a slave system, the dynamical 
behaviors of them may be identical after a transient when the 
slave system is driven by a control input. By using this 
synchronization principle, some chaotic circuits were developed 
and applied to secure communication systems [2-5]. 

Many methods have been developed to synchronize chaotic 
systems, including nonlinear feedback method [6], adaptive 
control method [7], anti-synchronization method [8] and sliding 
mode control method [9]. Chaos synchronization using active 
control which is introduced in [10] is one of the these methods. 
Unified chaotic systems [11], the energy resource chaotic 
system [12] and some other systems have been synchronized 
with this method. Two identical systems are usually 
synchronized by using of the methods mentioned above; 
however, it is not always possible to assume that all components 
are identical in engineering. Therefore, achieving 
synchronization of two different chaotic systems is more 
attractive and significant from a practical viewpoint.  

The paper investigates the mathematical and practical 
possibilities of synchronization of completely different chaotic 
systems using active control. To this end, a mathematical model 
is provided to solve synchronization problem of completely 
different chaotic systems using active control in Section 2. In 
Section 3, numerical simulations are provided to illustrate our 
findings using the Lorenz system (which can be encountered in 
atmospheric sciences, laser devices, and some other systems 
related to convective heat transfer) as the master system, and the 

Rössler system [13] (which can be encountered in chemical 
reactions) as the slave system. Main conclusions to be drawn 
from this study are given in Section 4. 

 
2. Active Control and Chaos Synchronization 

 
The active control method proposed in [10] is considered to 

synchronize two different chaotic systems. For this purpose, 
consider a master system 

 
( )x Ax g x= +�  (1) 

 
where nx R∈  is the state vector, xn nA R∈  is a constant system 
matrix, and ( )g x  is a nonlinear sequence function. A slave 
system is defined as 
 

( ) ( )y By f y tφ= + +�  (2) 
 

where ny R∈ is the state vector xn nB R∈  is a constant system 
matrix, ( )f y  is a nonlinear sequence function, and ( ) nt Rφ ∈  is 
an active control function. A master-slave synchronization 
scheme is illustrated in Figure 1.  The feedback from the 
controller ( )tφ  is designed to get the error e  to decay to zero. 
 

 
Figure 1: The master-slave synchronization scheme. 

 
The error state is defined as e y x= − ; therefore, the error 

dynamics are written as follows. 
 

         ( , ) ( )e y x Ce G x y tφ= − = + +� � �  (3) 
 
where C B A= −  is the common parts of the system matrices in 
the master and slave systems; the non-common parts and 
nonlinear functions are gathered in ( , )G x y  as 
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             ( , ) ( ) ( ) ( ) ( )G x y f y g x B B y A A x= − + − − −   (4) 
 
and ( )tφ  is the controller matrix. Error vectors with an 
appropriate controller ( )tφ  satisfying , , nx y e R∀ ∈  converge to 
zero. Hence, an appropriate controller should eliminate 
nonlinear terms and non-common parts, and contain another part 
to achieve stability, such as 

     
( ) ( , ) ( )t G x y u tφ = − +  (5) 

 
where ( )u t Ke= −  is a linear controller and xn nK R∈  is a linear 
gain matrix. Substitution of equation (5) into (3) leads to  
 
                                 ( )e Ce u t= +�   (6) 
 
With replacing ( )u t Ke= −  in the equation (6), the error 
dynamic is defined by   

 
( )e C K e= −�  (9) 

 
Synchronization of chaos by using active control can be realized 
when master and slave systems are completely different. If the 
eigenvalues ( 1, 2 ,...., )i i nλ =  of the matrix C K−  are negative 

( 0iλ < ), then the error state vectors exponentially converge to 
zero. That is, the master and slave systems exponentially 
synchronize. 
 

3. Numerical Simulations 
 
To realize and verify the chaos synchronization, two 

completely different chaotic systems, the Lorenz system as a 
master system and the Rössler system as a slave system, are 
selected.  

The master Lorenz system [1] is defined by 
   

1 1 1

1 1 1 1 1

1 1 1 1

( )x y x
y x y x z
z x y z

σ
α

β

= −�
� = − −�
� = −�

�
�
�

 (10) 

 
where σ , α  and β  are the system parameters. The slave 
Rössler system [13] is defined by 

 

2 2 2

2 2 2

2 2 2 2 2

x

y

z

x y z
y x ay
z bx cz x z

φ
φ

φ

� = − − +
� = + +�
� = − + +�

�
�
�

 (11) 

 
where a , b  and c  are the system parameters, and xφ , yφ , and 

zφ  are the control signals. Figure 2 exemplifies the Lorenz and 
Rössler attractors in the state space. 

The primary goal of the control signals defined as xφ , yφ , 

and zφ  is providing  the slave system to pursue the master 
system, which is the requirement to achieve synchronization. 
Error vectors are defined as 2 1xe x x= − , 2 1ye y y= − , and 

2 1ze z z= − . The error dynamics are defined by  

 

2 2 1 1

2 2 1 1 1 1

2 2 2 2 1 1 1

( )x x

y y

z z

e y z y x
e x ay x y x z
e bx cz x z x y z

σ φ
α φ

β φ

� = − − − − +
� = + − + + +�
� = − + − + +�

�
�
�

 (12) 

 
where the control vectors are defined as 

 

1 2 2 1 1

2 2 2 1 1 1 1

3 2 2 2 2 1 1 1

( )x

y

z

u y z y x
u x ay x y x z
u bx cz x z x y z

φ σ
φ α
φ β

� = + + + −
� = − − + − −�
� = − + − + −�

 (13) 

 
By writing equation (12) into equation (13), the error dynamics 
occur from only linear control vectors, 

 

1

2

3

1 0 0
0 1 0
0 0 1

x

y

z

e u
e u
e u

� � � � � �
� 	 � 	 � 	=� 	 � 	 � 	
� 	 � 	 � 	
 � 
 � 
 �

�
�
�

 (14) 

 
The linear controller ( )u t Ke= −  can be defined as 

 

1 11 12 13

2 21 22 23

3 31 32 33

x

y

z

u k k k e
u k k k e
u k k k e

� � � � � �
� 	 � 	 � 	= −� 	 � 	 � 	
� 	 � 	 � 	
 � 
 � 
 �

 (15) 

 
There are a number of choices to obtain controller coefficients 

ijk ’s to obtain a stable closed loop system. For a particular 
choice of feedback gains 

 

11 12 13

21 22 23

31 32 33

2 0 0
0 2 0
0 0 2

k k k
K k k k

k k k

� � � �
� 	 � 	= =� 	 � 	
� 	 � 	
 � 
 �

 (16) 

 
the error dynamics have eigenvalues that are found to be 2− , 

2−   and 2− , which leads to a stable closed loop system. Hence, 
synchronization of the Lorenz and Rössler systems are achieved 
as we will observe in numerical results. 

Numerical simulations are conducted by using Matlab / 
Simulink, and numerical results are given graphically to verify 
the proposed method. The simulation results are provided in 
Figures 2–7. The system parameters of the Lorenz and Rössler 
systems are selected as 10σ = , 28α = , 8 / 3β = , and 

0.32a = , 0.3b = , 4.8c = , respectively. The initial conditions 
of the master Lorenz and slave Rössler systems are taken as 

1(0) 10x = , 1(0) 10y = , 1(0) 10z =  and 2(0) 2x = , 2 (0) 2y = , 

2(0) 1z = , respectively.  
Figure 2 illustrates the phase portrait of the Lorenz and 

Rössler systems. Figure 2(a) shows the phase portrait of the 
Lorenz System, and Figure 2(b) shows the phase portrait of the 
Rössler system. In Figure 3, the time responses of the state 
variables of the Lorenz and Rössler systems are presented. 
Figure 3(a) displays 1x  and 2x , Figure 3(b) displays 1y  and 

2y , and Figure 3(c) displays 1z  and 2z .  
In Figures 4 and 5, control signals are activated at the time 
0t = . In Figure 4, the time responses of the state variables of 

the Lorenz and Rössler systems are presented. Figure 4(a) 
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displays 1x  and 2x , Figure 4(b) displays 1y  and 2y , and 
Figure 4(c) displays 1z  and 2z . It is seen that the active 
controller has synchronized the Lorenz and Rössler systems. 
Figure 5 illustrates the time responses of the error vectors. 
Figure 5(a) shows xe , Figure 5(b) shows ye , and Figure 5(c) 

shows ze . After control signals are activated, the error vectors 
converge to zero quickly.  

In Figures 6 and 7, control signals are activated at the time 
20t = . The time responses of the state variables of the master 

and slave systems are given in Figure 6. Figure 6(a) displays 1x  
and 2x , Figure 6(b) displays 1y  and 2y , and Figure 6(c) 
displays 1z  and 2z . In Figure 7, the time responses of the error 
vectors are presented. Figure 7(a) shows xe , Figure 7(b) 
shows ye , and Figure 7(c) shows ze . It is clear that after control 
signals are activated, the error vectors converge to zero quickly.  
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Figure 2: The phase portrait of (a) the Lorenz system, (b) the 

Rössler system. 
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Figure 3: The time responses of the state variables of the master 

1 1 1( , , )x y z  and slave 2 2 2( , , )x y z (dot lines) systems. 
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Figure 4: The time responses of the state variables of the master 

1 1 1( , , )x y z (dot lines) and slave 2 2 2( , , )x y z  systems with the 
controller activated at the time 0t = . 
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Figure 5: Dynamics of the synchronization errors ( , , )x y ze e e  

with the controller activated at the time 0t = . 
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Figure 6: The time responses of the state variables of the master 

1 1 1( , , )x y z  and slave 2 2 2( , , )x y z (dot lines) systems with the 
controller activated at the time 20t = . 
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Figure 7: The time responses of the error vectors ( , , )x y ze e e  with 

the controller activated at the time 20t = . 
 
 

4. Conclusions 
 
This study demonstrates that synchronization of completely 

different chaotic systems by means of active control is 
generalized. Numerical results verify the validity and 
effectiveness of the generalized active control method. Many 
chaotic systems in practical applications have different 
structures, thus, we believe that this generalized study will be a 
useful tool for synchronization of different chaotic systems via 
active control.  
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