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Abstract: Operating at absolute minimum cost can no
longer be the only criterion for dispatching electric
power due to increasing concern the environmental
consideration. The environmentally constrained
cconomic dispatch problem which accounts for
minimization of both cost and emission is a multiple
objective function problem. In this paper, an
improved Hopfield neural network which was
described in [1] is applied to environmentally
constrained economic dispatch problem. Sample test
results are presented.

1. INTRODUCTION

The economic dispatch (ED) is an optimization
problem to find the most economical schedule of the
generating units while satisfying load demand and
operational constraints. This problem has been tackled
by many researchers in the past. The literature of the
ED problem and its solution methods are surveyed in
[2] and [3].

The generation of electricity from fossil fuel
releases several contaminants, such as Sulfur Oxides,
Nitrogen Oxides and Carbon Dioxide, into the
atmosphere. Recently the problem which has attracted
much attention is pollution minimization due to the
pressing public demand for clean air. Since the text of
the Clean Air Act Amendments of 1990 and similar
Acts by European and Japanese governments,
environmental constraints have topped the list of
utility management concerns [4]. A summary of
environmental/economic dispatch algorithms dating
back to 1970 using conventional optimization

methods has been provided [5].

Several methods have been used to represent
emission levels. Kermanshahi ct al. [6] used the sum
of a quadratic and an exponential term Nandi et al.
(7] tried to find the best compromise between the
conflicting targets of minimum cost and minimum
emission by means of suitable multiobjective
procedures. Granelli et al. [8] proposed an emission
constrained dynamic dispatch procedure. It minimizes
fuel cost during a preselected time horizon and
thoroughly takes into account the environmental
constraints.

Artificial neural networks (NN) are finding
applications in several aspects of power system.
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Application of antificial neural networks to CConomic
dispatch has become an active research area in recent
years. Kumar and Sheble [9] described a method for
real-time economic dispatch using Kennedy, Chua and
Lin NN. Transmission losses and demand constraints
only were taken into account. The Kennedy-Chua NN
was justified for linear and quadratic programming
problems and the proposed method was applied to the
ED problem [10]. Park ct al [11] proposed to apply a
Hopfield NN 1o the economic dispatch problem for a
piecewise quadratic cost function. King et al [12]
reported an improved Hopfield NN for the economic-
environmental dispatch problem and illustrated 3-unit
and 12-unit systems. The Hopfield NN and the Taboo
Search technique have been applied to the
environmental economic dispaich problem by Rao-
Sepulveda et al. [13]. They presented a 3-unit test
system to validate the proposed methods.

The environmental economic dispatch problem
can be classified as a multiobjective optimization and
non-linear programming problem. Standard Hopfield
networks [14] have already been applied to different
optimization problems. Gee et al. [15, 16] discussed a
new methodology to improve the performance of
Hopfield networks. The authors formalized the
mapping process and provided a computational
method for obtaining the weights and biases for the
Hopfield networks. Gee’s method is quicker and more
accurate and is thus more efficient than the standard
Hopfield neural network method. This new mapping
technique has been used for solution of large scale
economic dispatch problems by Yalcinoz and Short
[1]. The proposed method has achieved efficient and
accurate solutions for different sizes of systems
having between 3 and 240 units.

In this paper, a method using improved Hopfield
neural networks [1] to solve the environmentally
constrained economic dispatch problem is proposed.
The proposed method is able to solve a multiobjective
function. The proposed method minimizes the
operation cost while SO, and NO, are reduced.

2. THE PROBLEM FORMULATION

The classic economic dispatch problem aims to
supply the required quantity of power at the lowest
possible cost [17]. The dispatch problem can be stated
mathematically as follows:
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To minimize the total fuel cost at thermal plants:

1-‘,—_1\/11)_1112(11i +b,P; +c;P?) (1)
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subject to the equality real power balance constraints:
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3

the inequality constraint of limits on the generator
outputs is:

Prnini S B < Prag i C))
where a;, b; and c; are the cost coefficients of the i-th
generator and n is the number of generators committed
to the operating system. P; is the power output of the
i~th generator, P® is the load demand and P" represents
the transmission losses.

However there is a large financial beneficial
from the classical dispatch strategy described above, it
tends to produce high SO, and NOy emissions. An
alternative  dispatch  strategy to  satisfy the
environmental requirement is to minimize operation
cost under environmental constraints. Emission
control can be included in conventional economic
dispatch by adding the environmental cost to the
normal dispatch. The emissions need to be converted
as an environmental cost and added to the generation
cost. The objective function then becomes

Minimize C = wO F +wl Es + w2 Ey (5)
Where Ej is the SO, emission function, Ey is the NO,
emission function. WO, wl and w2 are cost, SO,

emission and NO, emission weights respectively.

In this paper, like fuel cost curves, the SO, and
the NO, curves can be expressed as follows:

Es =) (d; +¢;P; +£;P7) ©)
i=1

and

Ex =i (gi +h;P; +k;P]) @)

i=1

where d;, ¢ ,f, g, hyand k; are parameters estimated
on the basis of unit emissions test results.

In this model, when emission weights are equal
to zero, the objective function becomes a classical

econoimic dispatch problem. In this economic dispatch
option, units arc 1o minimize the total system
production costs. When cost weight is st to zero, the
problem becomes emission minimization. In this case,
unite »ro 0 minimize the amount of emissions. When
weig.i are not zero in the objective function, the
problem becomes minimizing the fuel cost plus
emission at the same time.

3. HOPFIELD NEURAL NETWORK

The Hopfield model [14] is a single layer
recursive neural network where the output of each
neuron is connected to the input of every other neuron.
The energy fanction of the Hopfield NN, which is a
quaclratic function, is associated with the objective
function for minimizing the optimization problem.
Therefore, we must first decide how 10 set weights and
input biases for any minimization problem. This
process is called “mapping”. The sum of the
constraints and an objective function are given as
inputs to the energy function.

In this paper, the new mapping technique for the
Hopfield NN that have been described for quadratic 0-
1 programming problems with linear equality and
incquality constraints [16] with Abe’s formulation
[19] for inequality constraints is used. An efficient
simulation algorithm has been used to solve the
dynamic equation of the Hopfield NN where the time
step has been calculated. This approach was proposed
for solving the economic dispatch problem by
Yalcinoz and Short [1]. In this paper, this approach is
applied to the environmentally constrained economic
dispatch problem.

The simple quadratic problem without inequality
constraints is first considered. The feasible solution
for equality constraints can be described as
x =T +5 (8)
where To™ =] - A% (A9A® ) 1A &)
and s=A% (A% A )y (10)

For this case, the energy function can be written as

an

E=E® 4 —;—c‘,"x — (T ™ x 4 s)"2

The equality constraints have been combined into a
single penalty term in the energy function. The
network’s weights T and input biascs i® are set as
follows for satisfying the energy function (Eq. 11):

T = TObJ + co(Tcomtr _ I) (12)

i"=i"+c,s

(13)
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where

E optimization objective function

X . n dimension variable vector of objective

function

e n x n symmetrical matrix of objective
_ function coefficients

i n dimension vector of objective function

A™ : equality constraint matrix

b* m® dimension equality constraint vector

s feasible subspace offset vector

T . feasible subspace projection matrix

I identity matrix

The mapping technique can be extended to
include the inequality constraints which are converted
to equality constraints by introducing slack variables
[1]. Weights T and input biases i° for any
minimization process must be defined. We can set the
network’s parameters as Eq. 12 and Eq. 13. Hence the
Hopfield NN is created with n neurons for variables
and m"™ neurons for slack variables.

4. MAPPING OF THE PROBLEM

The environmentally constrained cconomic
dispatch problem is solved using the Hopfield NN
method described in Section 3. The objective function
of the environmentatly constrained economic dispatch
problem contains three cost functions, namely the total
fuel cost function, the SO, emission function and the
NO, emission function. The energy function of the
Hopfield neural network contains both the objective
function, and equality and inequality constraints. The
weights T°” and the input biases i°” of the objective
function are set as follows:

T =2 (w0 ¢;+wl £ +w2k)
and TM=0
i7" =—w0 b; +wl ¢ +w2 h;)

where b, and c; are the cost coefficients of the i-th
generator and ¢;, f; , h; and k; are parameters estimated
on the basis of unit emissions.

A*™ and b* are defined from the load demand
equation (eq. 2). Inequality constraints are converted
to equality constraints by introducing slack variables
[1]. For example, the lower limit of the i-th generator
may be converted to equality constraints as:

P 2P,

2 Poing = Priniyx —-F =0

where y, 21 (yx is a slack variable of the k-th

inequality constraint) and we can define A," and b™
as :

AP=1[00...-100 ... P, . 0. 0]

i-th generator  (nt+k)-th column

and bl =0
where
N : the number of generators
A" inequality constraint matrix
b™  : m" dimension inequality constraint vector

T*™ and s can be determined using (9) and (10)
after finding A*, A", b* and b™. Afierwards we can
set new weights and new input biases using (12) and

(13).

After the mapping of the problem, the Hopfield
NN model is ready to be used for solving the
environmentally constrained economic  dispatch
problem. At this stage, we have to solve the dynamic
equation of the Hopfield NN using the simulation
algorithm described in [1].

5. SIMULATION RESULTS

In order to validate the proposed procedure, the
environmentally constrained economic dispatch was
solved for a 3-unit system and for a CIGRE network.
The proposed method is implemented with Matlab on
a Pentium PC. Here, we have applied the proposed
method to the classical economic dispatch, the SO,
emission dispatch, the NO, emission dispatch and the
emission constrained economic dispatch.

The first test system is a 3-unit power system
with a 850 MW demand and with transmission losses.
The cost and emission functions coefficients are given
in [13]. Transmission losses are calculated using
equation (3). The transmission loss coefficients B are
given by

B = [0.00003 0.00009 0.00012]

In Table 1, the computational results of the
proposed method (PM) for the classical economic
dispatch, minimum SO, and minimum NO, are
compared with the results of the Taboo Search (TS)
and the Hopfield NN (HN) [13]. From the Table 1, it
is clear that the classical ED produces a minimum cost
dispatch and emissions are higher than the other
dispatches. In the SO, emission dispatch, SO,
emission is minimum and the production cost is higher
than the other cases. In the NO, emission dispatch,
NO, emission is minimum and the production costs
are better than those of the SO, emission dispatch.

From the Table 1, the production costs of the
proposed method (PM) are less than those of the HN
and the TS for the classical economic dispatch, the
SO, emission dispatch and the NO, emission dispatch.
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For the SO, emission dispatch, the PM provides better
solutions than the HN and the TS.

The results of the PM for the emission
cohistrained economic dispatch are shown in Table 2.
The production cost is higher than the classical ED
and the emissions are higher than the emission

dispatches.

The execution time of the PM for the 3-unit
system is about 0.02 seconds for all cases..

Table 1. Results of PM, HN and TS

Classical Economic Dispatch (minimum cost)

I | PM 'HN[13] |TS[13]
| Cost ($/hr) 18334.77  |8343.506 | 8344.598 |
| Emission SO, (ton/hr) [9.0294  [9.0201 | 9.02146
| Emission NO, (tonvhr) | 0.0995 |0.09863 | 0.09826
|LossesP“(MW)  |1522  |15692 15798 |
‘Power P, 41588 435836 | 43569
MW) [P, [32443 299365 |298.828
| P, 12491 [130491 | 131.28
I Emission SO, Dispatch (Minimum SO,) )
_ |PM HN[13] | TS[13]
Cost ($hr) 838444 |8388.13  |8403.485 |
Fmission SO, (ton/hr) [8.9633  |8.9649 8974
Emission NO, (tonvhr) [0.0969  |0.0965 009768
Losses P" (MW) 1433 114419 15722 |
Power  |P, 54112 | 543651 |549247 |
(MW) | P, 23795 (226195 | 234.582
L [p 8526 (94573 |81.893 |
Emission NO, Dispatch (Minimum NO,)
- PM lENps) Tspay
Cost($hr)  |835743 |8363.136 |8371143
Emission SO, (tonhr) [8.9709 8973|8985 |
Emission NO, (tow/hr) | 0.0959 009582 | 0.0958 |
[LossesP*(MW)  |14.26 14635 158
\Power  |P, 50246 506816 |502.914 |
MW) P, [25215  |250956 |254294
P, |109.65 106863 | 108592

Table 2. Results of the emission constrained ED

| Cost ($/hr) 8368.1
!E_mis§ion SO, (ton/hr) | 8.9666 |
| Emission NO, (ton/hr) | 0.0962

| Losses P* (MW) 14.39

| Power [Py |51926

| W) P, 252.33

_ Py [9280

The second test system is the CIGRE network
described in ref. 8. The system has 10 units with a
1750 MW demand and without transmission losses.
The proposed method has been applied to the classical
economic dispatch, the SO, emission dispatch, the
NO, emission dispatch and the emission constrained
economic dispatch for the CIGRE test system. The
results of the PM are given in Table 3. As the 3-unit
system, the classical ED produces a minimum cost
dispatch and the emission dispatches produces a
minimum emission levels. The emission constrained
economic dispatch produces a reasonable results. The
average execution time for the CIGRE system is about
1 sec.

Table 3. Simulation results

| Classical Economic Dispatch (minimum cost) |
| Cost (miltion $/hr) | 3.7006 1
Emission SO, (tow/hr) | 11.0611 |
| Emission NO,(towhr) 30789

__ Emission SO, Dispatch (Minimum SO,) ‘

Cost (million $/hr) 3.8075

| Emission SO, (tonhr)  |9.9553 |
| Emission NO, (towhr) | 3329.6 _'
| Emission NO, Dispatch (Minimum NO,) |
| Cost (million $hr) 3,915 |
| Emission SO, (ton/hr) | 119182

| Emission NO, (ton/hr) | 2718.0
| Emission Constrained Economic Dispatch |

|Cost (million $hr) 37014 !
Emission SO, (ton/hr) | 11.0387 .|
Emission NO, (ton/hr) 30522 ]

6. CONCLUSIONS

In this paper, an application of the improved
Hopficld neural networks [1] to the environmentally
economic dispatch problem has been proposed. The
proposed method has been applied successfully to the
classical economic dispatch, the SO, emission
dispatch, the NO, emission dispatch and the emission
constrained cconomic dispatch. The energy function
of the Hopfield NN consists of three functions which
are the production cost and emissions functions. The
proposed method has been tested on a 3-unit system
and a 10-unit system. The results show that this
method is capable of being applied to the
environmentaily economic dispatch problem.
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