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ABSTRACT 
Every reliability analysis effort, in some way, involves 
searching the state space of the system for those states that 
represent the events of interest, typically failure of the system 
or a given node to meet the demand. This essentially 
translates into a search procedure to efficiently identify states 
to be examined and then using a mechanism to evaluate these 
states. Traditionally, reliability analysis methods are based 
either on an implicit or explicit enumeration process or 
Monte Carlo sampling. More recently, methods based on 
artificial intelligence have been investigated both as an 
alternative to Monte Carlo for the search process as well as 
state evaluation techniques in conjunction with the Monte 
Carlo methods. This paper will examine the conceptual basis 
of overall reliability evaluation process and explore the role of 
artificial intelligence methods in this context. It will also 
provide some examples of application to the reliability 
analysis of hybrid systems involving conventional and 
alternative energy sources. 
 

I. INTRODUCTION 
Many probabilistic methods[1, 2] have been developed 
over the past several decades, and are now being used 
more widely in power system operations and planning to 
deal with a variety of uncertainties involved. Examples of 
these uncertainties are equipment outages, load forecast 
uncertainties, weather conditions, uncertainties in the 
availability of basic energy and operating considerations. 
In the new restructured environment, the probabilistic 
methods have even a stronger potential for application 
because of their inherent ability to incorporate economic 
analysis market uncertainties. By including the cost of 
reliability to customers, strategies for optimum planning 
and operation can be designed more systematically than is 
possible with deterministic methods.  
 
The basic steps of reliability assessment are shown in 
Figure 1. The first step is to define the system being 

analyzed and its operating policies. The system consists of 
components and therefore the models of the components 
and system need to be defined and specified. The 
combination of component states and system operating 
strategies describes system states. A possible approach 
would be a complete enumeration, i.e., to select each 
possible state in turn and evaluate it for its status as success 
or failure defined for a given node or the system. In power 
systems, the failure of the system often means that the load 
can not be satisfied and thus some part of it needs to be 
curtailed. Then based on the probability of the failed states 
and the magnitude and location of load loss, the relevant 
reliability indices can be computed. It can be seen from 
this process that the following are needed for the reliability 
evaluation. 

1) Component and system models, data and 
operating strategies; 

2) A state evaluation procedure; 
3) Specification of reliability indices to be 

computed. 
In all but very small systems, complete enumeration 
scheme is not feasible as the number of states increases 
exponentially with the increase of components. This is 
sometimes called the curse of dimensionality. The two 
categories of methods that have been developed in the past 
can be classified into analytical and Monte Carlo 
simulation (MCS). The analytical methods deal with this 
problem by several basic approaches such as state space 
reduction, state space truncation, implicit enumeration and 
contingency ranking [3]. The Monte Carlo method deals 
with this problem of dimensionality by sampling states 
using the basic concept that they occur proportional to their 
probabilities of occurrence [1, 4]. More recently, 
computational methods based on metaheuristic techniques 
have been developed for this purpose and show the 
promise of more intelligent search of state space [5, 6] than 



Monte Carlo. In a sense these metaheuristic techniques 
provide a more systematic and intelligence based 
truncation or pruning of state space. The intelligent 
methods have also been used for faster evaluation of the 
selected system states [13]. 
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Figure 1. Reliability evaluation steps 
 
This paper examines the conceptual basis of the overall 
reliability evaluation process and describes the role 
artificial intelligence methods can play in this context. It 
also provides examples of such applications to the 
reliability analysis of conventional and alternative energy 
sources. 
 

II. CONCEPTUAL CONSIDERATIONS 
Methods of power system reliability analysis can be 
considered to fall into two broad categories: analytical and 
computational methods where the computational methods 
include Monte Carlo simulation and intelligent search 
techniques. Basically, there are three stages inherent in any 
reliability method: state selection, state evaluation and 
index calculation. The analytical techniques and 
computational techniques differ mostly in the process of 
state selection as the number of possible states is extremely 
large for most practical applications. The analytical 
techniques use some device to circumvent the problem of 
straightforward enumeration such as state merging, 
truncation, implicit enumeration and sequential model 
building [1, 3]. The computational methods select system 
states based on their respective sampling or searching 
mechanisms. For instance, Monte Carlo techniques 
accomplish this by sampling states proportional to the 
probabilities of their occurrence while Intelligent Search 
(IS) techniques choose system states based on their fitness 
values in relation to the target problem. Analytical 
techniques represent the system by mathematical models 
and compute reliability indices using mathematical 
solutions. 
 
A. State space 
The whole state space is graphically illustrated in Figure 2 
by classifying all system states into different sets.  
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Figure 2. Classification of system states in the whole state 

space 
 
The total state space can be broadly divided into two sets: 
success and failed system states. The failed states can be 
further classified into dominant and non-dominant failed 
states. Dominant failed states here mean states that have 
more dominant effect on the computation of reliability 
indices. Any power system reliability model using 
computational methods comprises at least the following 
steps: 
 
1) Sampling of states: The states may be selected using an 
analytical approach, random and sequential sampling in 
MCS, or intelligent (fitness-guided) sampling in IS. The 
sampled state is defined by the status of all components 
comprising the system. 
2) Evaluation of states: This step is to determine whether 
the load can be satisfied given the status of generators and 
other components depending on the scope of investigation. 
3) Estimation of indices: Reliability indices are estimated 
from the repeated use of the two previous steps. The 
stopping criterion is based on the coefficient of variation 
being less than a stipulated value or other suitable 
consideration. 
 
It is important to note that any selected state first needs to 
be evaluated before it can be classified as a failed or 
success state. The state evaluation may be simple in some 
situations as in single area generation reliability studies 
where the sum of capacities is compared with the load to 
determine loss of load. In multi-area or composite 
reliability studies a flow calculation method is used to 
determine magnitude and location of loss of load. The flow 
algorithm could be transportation flow method as in multi-
area studies or DC/AC power flow for composite system 
reliability studies. The state evaluation in such applications 
can be computationally intensive and may constitute the 
most significant part of computational burden. Since every 



state selected needs to be evaluated, the number of states 
selected for the computation of the indices has a significant 
effect on the computational efficiency. There are two 
important observations from this discussion: 
 
1) The number of states sampled or selected for 

evaluation should have as higher percentage of failed 
states as possible within the computational framework 
of the method. 

2) The technique for state evaluation should be efficient. 
 
In the remainder of this paper, we will first discuss the role 
of IS in the state selection and this will be the main focus 
of our paper. For comparison we will use the Monte Carlo 
simulation (MCS). Later we will also describe the role of 
artificial intelligence in the state evaluation process and 
refer to the reader to relevant literature. 
 

III. COMPARISON OF MONTE CARLO TO 
INTELLIGENT SEARCH 

Let us first examine the MCS by considering its 
application to the estimation of the loss of load probability 
(LOLP) index. The various steps are outlined below. 
 
Step 1: Select the seed for the random number generator. 
Set the maximum iteration number and let the initial 
iteration number k = 1; 
Step 2: Sample the system state randomly (load level, 
generation status and line status) and perform a flow 
calculation to classify it as loss-of-load or otherwise.  
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Step 3: Calculate LOLP, variance of the estimated LOLP 
and the coefficient of variation. 
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 Step 4: Check whether the coefficient of variation σ  is 
less than a specified threshold δ .  If δ<σ or maxKk > , 
stop; otherwise, k=k+1, go to step 2. 
 
It can be seen from equation (2), that in MCS both the 
success and failed states enter the index calculation. 

Therefore one can not focus on the identification of the 
failed states alone but a proportional number of success 
states need also be generated to calculate the reliability 
index. One should keep in mind though that both success 
and failure states will need to be evaluated before they can 
be classified as such. 
 
Distinguished from the random sampling in MCS, in IS 
sampling can be interpreted as the “optimization process”. 
The process of applying IS optimization operators in 
deriving the next generation of individuals is the sampling 
mechanism of IS algorithms. Here the individuals with 
higher fitness values have higher chances to be sampled in 
each iteration. The general computational flow of any 
population-based intelligent search (PIS) algorithms can be 
illustrated in the following: 
 
• Step 1: A population of individuals is randomly created. 
•Step 2: Each individual is evaluated based on the specified 
objective function, which is used to measure the “fitness” 
of each individual. Here the term “fitness” is slightly 
abused to generally indicate the “goodness” of each 
individual with respect to the specific problem, though it is 
usually used in genetic algorithms. 
• Step 3: Determine if any stopping criterion is satisfied. If 
yes, halt the PIS algorithm; otherwise, go to next step. 
• Step 4: Different PIS operations are applied to each 
individual in order to create the next generation of 
individuals. 
• Return to Step 2 until any stopping criterion is satisfied. 
 
It can be appreciated here that in IS, only the failure states 
contribute to the index calculation. Thus the focus here is 
to generate the dominant failure states. Success states also 
will be created during this process but the efficiency 
depends on the design of the fitness function to minimize 
the generation of success states. In this fashion, much 
fewer states need to be evaluated than the MCS. Therefore, 
unlike MCS, PIS is rather problem dependent, where 
system states with higher failure probabilities have higher 
chances to be selected and evaluated. Here in PIS the 
failure probability of system state is used to guide the 
search. In some sense, this characteristic enables PIS to 
have promise to outperform MCS for some type of 
problems due to its potentially higher algorithmic 
efficiency. The driving force behind each PIS renders the 
search more purposeful by avoiding problem-independent 
random sampling. Due to the difference of estimation 
philosophies between MCS and PIS, the deviations of 
estimated results in relation to the “real” values may be 
different between them. For instance, in MCS, the 
estimated values of indices may be larger or smaller than 
the actual values; however, in PIS, the estimated values are 
always somewhat smaller than the actual ones. Especially, 



in highly reliable systems, since failure states are scattered 
in the state space in an extremely sparse fashion, it is 
possible that, in a given sampling window, the MCS 
method can not sample the failure states in their “real” 
ratio with respect to the total number of system states. This 
will inevitably lead to larger estimation errors of the 
intended reliability indices or even cause convergence 
problem. It should be noted that PIS-based algorithms can 
have a special advantage in cases where flow calculations 
using DC/AC load flow are needed to evaluate a sampled 
state. When a state is sampled, it can be identified to be 
loss of load only after the evaluation process. Since in 
MCS, majority of the states sampled are success states, this 
flow calculation will need be carried out more often. On 
the other hand, in PIS the states are sampled in a more 
directed fashion and thus the evaluation process will be 
used more efficiently. 
 
In PIS algorithms, each individual is regarded as a 
potential solution and many individuals comprise a 
population. For a specific PIS algorithm, individual has 
different names. For instance, in GA, each chromosome is 
an individual, which is made up of a bunch of genes. In 
ACS, the tour traveled by each ant (referred to as “ant” for 
brevity) is deemed a potential solution. In PSO, each 
particle flying in the search space is thought of as a 
candidate solution. In AIS, each antibody is seen as a 
potential solution. A binary coding scheme may be used to 
represent each individual, where each bit takes one or zero 
to indicate the component state. “One” and “zero” 
represent the working and failed status of each component. 
The target problem is concerned with combinatorial 
optimization, and its objective is to find  the failure state 
array which can be used to calculate different adequacy 
indices. There are two major stages in the evaluation 
procedure: First the failure-state array with respect to the 
maximum load demand is derived using PIS, and then the 
reliability indices are calculated by convoluting the 
effective total capacity with the hourly load based on the 
state array achieved previously. The computational flow of 
the proposed evaluation procedure is laid out in the 
following. 
• Step 1: Generate a population of individuals randomly. 
The states of components are initialized by binary 
numbers. 
• Step 2: Evaluate each individual i based on the defined 
objective function, for example LOLP with respect to the 
defined load. If its value is less than the specified LOLP 
threshold (a small LOLP value below which the 
corresponding states are filtered out), it is assigned a very 
small fitness value in order to reduce its chances of 
participating in subsequent PIS operations. Also if the state 
is a success state, the fitness of corresponding individual is 

assigned a very small value so as to reduce its chances to 
contribute to next generation.  
• Step 3: Increase the iteration number by one; 
• Step 4: Check if any stopping criterion is met. If yes, halt 
the algorithm and output the state array derived. If no, go 
to the next step. 
• Step 5: Different PIS operators are applied for producing 
the next generation, and then repeat the procedure from 
Step 2 to Step 4 until any stopping criterion is satisfied. 
• Step 6: Calculate the adequacy indices based on the 
achieved state array. 
 

IV. STATE EVALUATION: NEURAL NET BASED 
METHODS 

From the steps of the straight Monte Carlo simulation, we 
can make two observations: 1) for each sampled state, a 
flow calculation has to be performed to determine its load-
loss status; 2) because of the random sampling, many 
similar states are sampled in the simulation and their 
chracteristics determined repeatedly. Therefore, the 
straight Monte Carlo simulation is very time-consuming. 
 
Two neural net based methods have been proposed for 
state evaluation [13]. The first method (designated Method 
A in this paper) is to more efficiently determine the load 
loss characteristic of the sampled state. In this method, the 
Self-Organizing Map (SOM) is trained to recognize the 
loss-of-load states. Once this training is complete, the 
SOM is used along with the Monte Carlo simulation to 
estimate the reliability of the system. This method 
overcomes the first disadvantage of the straight Monte 
Carlo simulation. Incidentally, another method that has 
been used to identify system states in flexible 
manufacturing systems[14] is based on Group Method of 
Data Handling (GMDH). This method can also be easily 
used for power system applications. 
 
The second method (designated method B) proposes to 
cluster the sampled states before determining their load 
loss characteristics. In this method, Monte Carlo 
simulation is used first to accumulate states, then SOM is 
used to cluster these states and flow calculation is used for 
analysis of clustered states. This method overcomes the 
second disadvantage of the straight Monte Carlo 
simulation. 
 
It has been shown that Monte Carlo simulation can be 
made more efficient using SOM [13]. We will first 
discuss the input training features for SOM. Then the 
approaches to marry SOM and MCS will be discussed. 
 
 



Input Training Features 
For the problem of loss-of-load state identification, a 
power system state can be characterized by load 
conditions, network topology and availability status of 
generators. Because the probability of outage of a 
transmission line is very small, it may be assumed that 
the lines are fully available all the time. The input vector 
corresponding to a system state then is: 
 

],...,,,,...,Q,[ 1i11 imiininii PGPGQPPX =  (5) 

ikP :  Real power load of bus k for state i 

ikQ : Reactive power load of bus k for state i 

imPG :  Available real power generation of bus m for 
state i  

n : The number of load buses 
m: The number of generation buses 
 
Marriage between MCS and SOM 
It may be recalled from the earlier discussion that the 
two drawbacks of MCS are the excessive time taken by 
state characterization and the sampling and 
characterization of similar states repeatedly. This 
subsection describes two methods to overcome these 
drawbacks. 
 
Method  A 
Method A can determine the load loss characteristics of 
the sampled state more efficiently. In method A, the 
SOM is trained to recognize the loss-of-load states. Once 
this training is complete, the SOM is used along with the 
Monte Carlo simulation to estimate the reliability of the 
system. In this version of MCS-SOM the state evaluation 
is done by the trained SOM rather than OPF calculation. 
Thus this method overcomes the first disadvantage of the 
straight Monte Carlo simulation. The overall procedure 
of method A consists of the following steps.         
Step 1: Prepare the training patterns for SOM. Training 

patterns are obtained by OPF calculations 
which characterize each training pattern as loss 
of load or otherwise. 

Step 2: Carry out SOM training with the prepared 
training patterns. 

Step 3:  Label a neuron in the map as loss-of-load or no-
loss-of-load according to the majority label 
voting of the training patterns mapped to that 
neuron. 

Step 4: After the SOM network is trained, Monte Carlo 
simulation follows the same procedure as in 
section III except that state classification is 
performed by SOM instead of OPF. The class 
(loss-of-load or no-loss-of-load) of each 

sampled state is determined by the label of the 
nearest neuron in the map. 

Method B 
In Method B, states sampled by MCS are clustered 
before determining their load loss characteristics. Monte 
Carlo simulation is used first to accumulate states, then 
SOM is used to cluster these states and OPF is used for 
analysis of clusters. Thus Method B overcomes the 
second disadvantage of the straight Monte Carlo 
simulation. The overall procedure of method B consists 
of the following steps.         
Step 1: Perform Monte Carlo sampling of the system 

state space to get N samples. These samples are 
taken as training vectors to SOM. N is decided 
by experience, for example, N=10,000. 

Step 2: Put the training vectors generated in step 1 into 
Self-Organizing Map and train it. After training, 
the weight vector of each neuron represents a 
kind of equivalent power system state and 
maintains the original data’s topological 
relationships. Also some neurons do not map any 
of the training vectors, and some neurons map 
one or more training vectors. 

Step 3: Perform OPF calculation for each neuron that has 
mapping of the training vectors. Determine the 
load-loss status of the neuron by using its weight 
vector as inputs to the OPF program. Label the 
neuron as “1” if it is loss-of-load and “0” if it is 
not loss-of-load.  

Step 4: Count the number of sampled states in  which 
are mapped to each loss-of-load neuron i in the 
Self-Organizing Map. 

Step 5:  Calculate the estimated LOLP value. 

N

n
LOLP i
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=  
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V. CASE STUDIES 

In this section, two case studies using PIS and MCS-SOM 
methods for reliability evaluation are discussed. 
 

PIS BASED STATE SELECTION 
Some studies are reported in Ref. [6] on a WTGs-
augmented IEEE RTS-79. The original RTS has 24 buses 
(10 generation buses and 17 load buses), 38 lines and 32 
conventional generating-units [7]. The system annual peak 
load is 2850 MW. The total installed generating capacity is 
3405 MW. In this study, one unconventional subsystem 
comprising of multiple identical WTGs is added to the 
RTS. Each WTG has an installed capacity of 1 MW, a 
mean up time of 190 hours and a mean down time of 10 
hours. The hourly derating factors for WTG output can be 



found in [8]. Reliability indices are calculated for a time 
span of one week and the load cycle for week 51 with peak 
load 2850 MW, low load 1368 MW and weekly energy 
demand 359.3 GWh. The impact of wind power 
penetration is examined by incorporating installed wind 
power capacity of 400 MW. 
 
For peak load of 2850 MW with wind power penetration of 
400 MW, the system adequacy indices obtained using the 
exact method [8], MCS, and proposed PIS methods are 
listed in Table I. The PIS techniques include ant colony 
system (ACS) [9], artificial immune system (AIS) [10], 
binary particle swarm optimization (BPSO) [11], and 
genetic algorithm (GA) [12]. The units for LOLE, EENS, 
and LOLF are h/week, MWh, and occ./week, respectively. 
The time is in seconds. Here all the four discrete PIS 
optimizers are used to derive the meaningful system states. 
The population sizes for all PIS algorithms are set 300. We 
can see that the performance of MCS is the worst among 
all methods in this scenario of our problem in terms of 
solution quality and computational time. The solutions 
derived by all PIS algorithms are comparable to the exact 
ones. Among them, the solutions from ACS are slightly 
more accurate than those of others. GA is the most 
computationally expensive one primarily due to its time-
consuming genetic operations. BPSO has the shortest 
convergence time because of its simpler operations. 
 

TABLE I. RELIABILITY INDICES FOR UNCONVENTIONAL 
CAPACITY 400 MW 

Method    LOLE      EENS      LOLF  Time  
ACS  0.789780   98.921   0.193233  21.6  
AIS  0.789768   98.912   0.193229  22.7  

BPSO  0.789760   98.909   0.193221  15.4  
GA  0.789740   98.900   0.193213  29.3  

MCS  0.771991   96.211   0.190632  59.4  
Exact method 0.789840   99.085   0.193275  29.9  

 
To measure the efficiency of the various methods, we 
define a ratio to measure the convergence performance (i.e. 
sampling efficiency) of different PIS algorithms for the 
scan and classification task. 
 
          

samples  totalofNumber 
sampled states meaningful ofNumber 

=λ              (7) 

This ratio can be used in each generation or across the 
whole optimization process. It varies depending on the 
algorithm efficiency and solution density in the search 
space. It should be noted that although this ratio is defined 
for measuring the convergence performance of PIS, it also 
has significance in the context of MCS which is virtually 
the estimate of LOLP as defined in (2), if the “meaningful 
states” are also interpreted as the “dominant failed states”. 

As compared with PIS, in MCS a smaller proportion of 
sampled system states are expected to be dominant failed 
states. 
 

MCS-SOM BASED STATE EVALUATION 
Here studies were performed on the original IEEE RTS-
79. The reliability analysis was performed at the peak 
load level. Studies using hourly load level can be found 
in [13]. 
 
Method A 

A.  Input selection 
The total load is fixed at the peak load of 2850MW. The 
input features for the SOM network consist of the 
generating unit statuses only with the lines assumed 
available at all times. There are 32 units distributed at 10 
buses leading to the input vector: 
 

],,......,,[ 10921 PGPGPGPGX =   (8) 

B.  SOM training  
A total of 500 different training patterns were used to train 
the SOM network. These training patterns were non-
repetitive and from the high probability region of the state 
space. This was achieved by varying the availability status 
of units through a preliminary Monte Carlo experiment and 
evaluation by OPF.  Table II [13] shows the characteristics 
of the SOM training. 

 
TABLE II. CHARACTERISTICS OF SOM (METHOD A, PEAK 

LOAD LEVEL) 
Input dimension 10 
Number of training patterns 500 
Kohonen layer (x*y) 20*20 
Topology rectangular 
Neighborhood type bubble 
Learning rate type linear 

function 
Iteration number for phase I 2000 
Initial neighborhood radius for phase I 15 
Initial learning rate for phase I 0.8 
Iteration number for phase II 20000 
Initial neighborhood radius for phase I 3 
Initial learning rate for phase II 0.03 

 
After training, the map was calibrated and labeled 
according to the samples in the input data file. The best 
matching neuron in the map corresponding to each data 
vector was found. The neurons were then labeled as loss-
of-load or no-loss-of-load according to the majority of 
labels “hitting” a particular map neuron. The neurons that 
got no “hits” were left unlabeled.  Using this procedure, 



143 neurons were labeled as loss-of-load or no-loss-of-
load. 

C.  Monte Carlo simulation 
Monte Carlo simulation was performed to estimate the loss 
of load probability (LOLP) but for each sampled system 
state, SOM, instead of OPF, was used to characterize it. 
The label of the nearest neuron to each sampled system 
state was the estimate of load-loss status. Ten thousand 
states were sampled in the simulation - there were 8759 no-
loss-of-load states and 1241 loss-of-load states 
characterized by SOM. Thus the estimated LOLP is 
0.1241. 
 

Monte Carlo simulation using OPF was performed to 
obtain the benchmark value of LOLP at peak load level. 
For the 10000 system states sampled above, there were 
8774 no-loss-of-load states and 1226 loss-of-load states 
characterized by OPF. The computed benchmark value of 
LOLP is thus 0.1226. Among the 8774 no-loss-of-load 
state classified by OPF, 8720 states were classified as no-
loss-of-load correctly by SOM in method A, resulting in a 
classification accuracy of 99.38%. Among the 1226 loss-
of-load states, 1187 states were classified as loss-of-load 
correctly by SOM, giving a classification accuracy of 
96.82%. It should be noted that calculations for the 
classification accuracy were made for the benchmark case 
and not for the case where only SOM was used for 
calculating the LOLP. 
 

D.  Computing time 
It required 5 seconds for the phase I of SOM training 
(global ordering) and 31 seconds for the phase II of SOM 
training (fine-tuning). For the characterization of all the 
10000 sampled states, the computing time was 3 seconds.  
Compared to the straight Monte Carlo simulation, which 
needs to perform 10000 OPFs, the computing time is 
greatly reduced. The program was implemented in C 
language and run on a Sun Solaris 2.5. 
 
Method B 
Reliability analysis discussed below was also performed 
at the peak load level. 

E.  SOM training  
The total load is fixed at the peak load of 2850MW. The 
input features for the SOM network are the same as (8). 
A total of 10,000 training vectors generated from Monte 
Carlo sampling were used to train the SOM network. 
The training parameters of SOM are listed in Table III. 

 
 
 
 

TABLE III. CHARACTERISTICS OF SOM (METHOD B, PEAK 
LOAD LEVEL) 

Input dimension 10 
Number of training patterns 10000 
Kohonen layer (x*y) 30*30 
Topology rectangular 
Neighborhood type bubble 
Learning rate type linear function 
Iteration number for phase I 3000 
Initial neighborhood radius for phase I 20 
Initial learning rate for phase I 0.9 
Iteration number for phase II 30000 
Initial neighborhood radius for phase I 3 
Initial learning rate for phase II 0.03 

F.  LOLP calculation 
After SOM training, there were 368 neurons in the map 
that had mapping of the training vectors. These neurons 
were labeled as loss-of-load or no-loss-of-load by using 
their weight vectors as inputs to OPF. After the map was 
labeled, the total number of samples mapped to the loss-of-
load neurons was counted. Among the 10000 samples, 
there were 1187 samples mapped into loss-of-load neurons. 
Thus the estimated LOLP value is 0.1187. 
 
As shown before in straight Monte Carlo simulation, there 
were 8774 no-loss-of-load states and 1226 loss-of-load 
states of the total 10000 samples and the benchmark value 
of LOLP at peak load level is 0.1226. Among the 8774 no-
loss-of-load states classified by OPF, 8763 states were 
classified correctly by SOM in method B, resulting in a 
classification accuracy of 99.87%. Among the 1226 loss-
of-load states classified by OPF, 1176 states were 
classified correctly by SOM, giving a classification 
accuracy of 95.92%. 

G.  Computing time 
The computation time required for method B consists of 
two major components, the time required for training the 
SOM and that for using OPF to label the neurons as loss-
of-load or not. For the peak load condition, it required 6 
seconds for the phase I of SOM training and 55 seconds 
for the phase II. Also because there were 368 neurons 
that had mapping of the training vectors, 368 OPFs were 
performed to label these neurons after the SOM training. 
Compared to the straight Monte Carlo simulation that 
needs 10000 OPFs, the computing time is greatly 
reduced. Method B was also implemented in the C 
language and run on a Sun Solaris 2.5. 
 

VI. CONCLUDING REMARKS 
Artificial intelligence techniques have drawn much 
attention in dealing with complex and challenging 
problems in power systems. Among them, reliability 
evaluation is a type of representative applications. In this 



paper, some concepts on reliability evaluation based on 
population-based intelligent search as well as neural 
network enhanced MCS are presented. Also some case 
studies are presented to demonstrate the effectiveness of 
the proposed methods. It appears that the intelligence 
based methods hold promise for reliability studies and 
merit further investigation. 
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