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Abstract 
 

Segmentation of organs from abdominal Computed 
Tomography Angiography (CTA) images is one of the 
essential steps in quantitative measurements (e.g. volume, 
size etc.). Due to gray level similarity of adjacent organs, 
injection of contrast media, high variations in organ 
borders, partial volume effects and atypical shapes, effective 
segmentation of these organs is a very difficult task. In this 
paper, we propose a semi automatic and neural network 
based segmentation method that adapts its parameters 
according to each dataset by learning the data 
characteristics in parallel to segmentation process, thus 
named patient oriented neural networks. Proposed approach 
makes the design of the overall system fully automatic (if the 
initial segmentation result is also automatic) without 
requiring any training set. The segmentation results are 
evaluated by using area error rate and they show that, the 
proposed algorithm gives promising results in most of the 
challenging aspects of abdominal organ segmentation. 

 
1. Introduction 

 
Measurements (i.e. volume, size etc.) of the abdominal 

organs (i.e. liver, spleen, right and left kidneys) are important in 
the evaluation procedures prior to diagnosis, therapy and 
surgery. One of the routine techniques for evaluation of patients 
is CT-Angiography (CTA) [1], which is a widely used 
radiographic technique for the rendering of abdominal organs. 
Instead of conventional angiography, CTA provides minimally 
invasive intervention, diminished patient morbidity, cost, and 
radiation exposure to patients and staff. Before 3D rendering 
and the measurement of necessary parameters from CTA, 
accurate segmentation of the organs from surrounding tissues 
and other organs is necessary. Since the number of image slices 
is usually high, manual segmentation of these organs on each 
slice is time consuming and tedious. Also the results highly 
depend on the skill of the operator. Therefore, (semi) automatic 
segmentation procedures are needed while there are several 
challenging issues in (semi) automatic segmentation [2].  

First of all, the gray level values of adjacent organs in the 
abdomen are similar to each other (Fig. 1.a-1.b) which limit the 
performance of thresholding and morphology based techniques 
[3-6]. Moreover, the organs and tissues can get very different 
values than expected Hounsfield range for different patient 
datasets or in different slices of the same dataset due to the 
injection of contrast media (Fig. 1.c). Moreover, the 

parenchymas of these organs become inhomogeneous due to the 
enhanced vessels. These prevent the usage of the techniques that 
only use gray level and gradient [7-12]. Finally, the anatomical 
structure of these organs in different image slices is different 
(Fig. 1.e, 1.f) and their shape and position can vary significantly 
in different patients and different CTA series (Fig. 1). Patients 
might also have atypical (i.e. unusual size or orientation) organs 
(Fig. 1.d) that limits the use of shape based techniques. 

 

  
       (a)             (b) 

  
       (c)             (d) 

  
       (e)             (f) 

 
Fig. 1. Examples of CTA images and representation of 

challenging difficulties in segmentation a) Four organs of 
interest, liver: red, right kidney: blue, left kidney: green, spleen: 
orange, b) challenges in segmentation (See text for details), c) 

effect of contrast agent, d) atypical liver, e) a slice from the 
beginning and, f) a slice from the end of a CTA series. 

 
In abdominal image segmentation, Artificial Neural 

Networks (ANN) is used for gray level classification in [11] and 
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for feature based recognition in [12]. The technique proposed in 
[11] require several manually segmented image as training data 
while in [12] training is done with a limited set of images. A 
contextual NN is proposed in [13], but the results show that it 
fails where the gray level of the desired region is too close to the 
adjacent tissues. In [14], texture of the abdominal organs is used 
for segmentation. In a more recent, neural networks are used in a 
way that the algorithm updates the weight of the ANN in 
parallel based segmentation process to adapt the changes in the 
dataset for liver segmentation from CTA studies [15]. 

Our strategy for overcoming these difficulties involves a 
ANN based strategy which is not trained in advance. Instead, it 
is capable of adjusting its parameters by an iterative training and 
weight update mechanism. The main reason for this approach is 
that the ranges of the parameter values differ significantly from 
patient to patient, and these wide ranges decrease the efficiency 
of the method when an ANN is trained even with a diverse 
training set. Thus, the wide range of parameters between 
different slices/datasets can be adjusted properly. In other 
words, we propose a method which examines and adapts its 
parameters according to each patient, so named patient-oriented 
neural network.  

The rest of the paper is organized as follows. The properties 
of the patient datasets are presented in Section 2. The 
segmentation system is explained in Section 3. The evaluation 
of the system is given in Section 4. Finally, future plans for the 
improvement of the system are discussed in Section 5. 

 
2. Patient Datasets 

 
Our datasets were acquired after contrast agent injection at 

portal phase using a Philips Secura CT with 2 detectors and a 
Philips Mx8000 CTA with 16 detectors, both equipped with the 
spiral CTA option and located in Dokuz Eylül University 
Radiology Department. This technique scans the entire abdomen 
in 15 to 30 seconds and offers several advantages. Its speed also 
reduces or eliminates respiratory mis-registration between slices. 
20 datasets (CTA series), which were obtained by these 
scanners, consist of 12 bit DICOM images with a resolution of 
512 x 512. The datasets were chosen randomly from the Picture 
Archiving and Communication System (PACS). All of the 20 
CTA series have 3 to 3.2mm slice thickness and this 
corresponds to a slice number around 90 (minimum 77, 
maximum 105 slices). 

 
3. Methodology 

 
In this paper, a four step algorithm (Figure 2) for 

segmentation of abdominal organs from CTA images is being 
proposed. The algorithm is an extended version of the liver 
segmentation algorithm which is introduced in [16] and 
designed particularly for the segmentation of the liver from CTA 
series. In this modified and extended version, the algorithm is 
capable of segmenting all abdominal organs including liver, 
spleen, right kidney and left kidney. The price that is paid to 
extend the algorithm from segmenting only liver to all 
abdominal organs is switching from automatic to semi-
automatic. However, being semi-automatic, the proposed 
algorithm only requires only one manually segmented slice for 
each organ. In comparison to the number of slices in the 
complete series (usually around 100), we can say that the user 
interaction and the dependency to user expertise level are 
minimized.  

The algorithm starts with a manually segmented slice in 
which the organ of interest (i.e. liver, kidney, spleen or right/left 
kidneys) is manually segmented and left alone by a physician. 
These manually segmented slices will also be called as initial 
image(s) in the rest of this paper. Starting from a manually 
segmented slice, the algorithm runs through the end of the data 
set and then again starting from the same manually segmented 
slice it runs through the beginning of the data set to complete the 
segmentation process. This process is done for each organ to 
segment. 

Before starting to explain the segmentation algorithm in 
detail, it might be useful to point possible pre-processing 
operations which can have a significant affect on the 
performance. For reducing the computation complexity and for 
increasing the performance of the segmentation algorithm, as 
much irrelevant information as possible should be removed from 
the images at a preprocessing stage. From the anatomy 
knowledge, we know that the abdominal organs are surrounded 
by the ribs, spine, fat tissue, and muscle tissue. These tissues are 
out of interest in abdominal organ segmentation and removing 
them might probably result in better segmentation and/or 
classification performance. Also the unnecessary parts of the 
image starting from the top (from the first non-zero pixel) can be 
removed. These preprocessing steps can be done for the 
complete series of CTA images in advance (to the whole dataset 
at once prior to segmentation process) or can also be done 
iteratively (slice by slice, during or before the segmentation 
process). Of course, one very important point is not to remove 
any information that belong to the organs of interest when 
removing the others. In this paper, we will no further go into 
details about possible preprocessing steps due to the lack of 
space and will focus on the methodology of segmentation. 

The four main steps of the algorithm (Figure 2) can be 
explained as follows: 

Step 1) The main aim of this step is the initial training of the 
neural network, Multi Layer Perceptron (MLP) [17]. For this 
initial training, manually segmented slice (initial image) is used. 
Let us call the original form of this slice as “INitial Image” 
(INI) and manually segmented version of it as “segmented 
initial image” (SINI). SINI is a binary image where 1 represents 
the pixels that belong to the manually segmented organ and 0 
values represent the rest. From the INI, two statistical features 
are extracted. These are the mean, which is being used to 
represent the homogeneous inner side (i.e. parenchyma) of the 
organs and the standard deviation, which is used to enhance the 
borders of the organs. The third feature, the distance transform 
is then extracted from SINI. Here, the distance transform feature 
is used to represent the direction, alignment and the position of 
the organ (Fig. 3). This information is provided by a metric, 
which is calculated to measure the total Euclidean distance 
along the horizontal, vertical, and diagonal directions, defining 
the separation of the pixels in an image (Besides its use in this 
step, this feature will be used to get adjacent slice information in 
step 2). 

The network is trained initially by using the calculated three 
features as the training data and the SINI as the desired output. 
At the network output, each input pixel is classified as belonging 
to the liver region or lying outside the liver region on the basis 
of these features. After this initial training, weights are updated, 
the network had been initialized and the iterative segmentation 
process starts (Step 2, Step 3 and Step 4).  
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Fig. 2. Segmentation process by using MLP, (1) Preprocessing 
of all images is followed by the selection and segmentation of 

the initial image. The initial training is done by using the 
segmented initial image as the desired output and the feature 
vectors obtained from initial and segmented initial images as 

training data, (2) then, the algorithm proceeds to next slice and 
at each slice previously found weights are used for classification 

with MLP. (3) Post-processing is applied to obtain the 
segmented image, (4) the weights are updated using the current 
segmented image as the desired output and the feature vectors 

obtained from the current slice as training data 
 

Step 2) After the initial training of MLP using INI and SINI 
and post processing of the MLP result, iteration proceeds to the 
next slice (preceding or succeeding based on the direction of the 
iteration). Let us call this slice Current Image to Segment (CIS).  

Mean and standard deviation features are calculated for the 
CIS. However, this time, the distance transform is calculated 
from the previously segmented image (segmentation result of 
the previous slice). By using these features and the previously 
adjusted weights (weights adjusted for the previous slice), the 
CIS is classified using MLP. 

Step 3) The result obtained from the neural network usually 
need a few more basic image processing operations for 
refinement. These may include filtering (i.e. median, Gaussian 

etc.) for boundary smoothing, morphological operations (i.e. 
erosion, dilation, reconstruction etc.) for removing mis-
segmented parts or enhancing/suppressing information. The 
post-processing steps for each organ of interest is usually 
different and requires different operations or at least different 
parameters related to its size, shape, connectedness (i.e. liver 
may have dissect into two regions) and adjacent tissues and/or 
organs. These post-processing steps will not be discussed here 
but [16] explains the details of the post-processing steps for liver 
segmentation. After the post-processing, the remaining binary 
mask is applied to original image and the segmentation result is 
obtained. Then, the algorithm switches to step 4. 

Step 4) After the segmentation of the CIS, the network is 
trained again and the weights are updated by using the features 
(calculated for the original CIS (i.e. mean and standard 
deviation) and segmented CIS (i.e. distance transform) as the 
input and the new segmented CIS as the desired output. The 
training time is reduced significantly by using the previously 
found weights as the initial weights of the update process. 

In our algorithm, the distance transform gives information 
about the organ location at the adjacent (preceding/succeeding) 
slice. Since the sizes and locations of the abdominal organs do 
not change dramatically between adjacent slices, the distance 
transform of a segmented organ (Figure 3) gives quite important 
information about it location and orientation at the adjacent 
(preceding/succeeding) slice. (This way of segmentation is 
actually the automatic version of the method that the physicians 
use for manual segmentation studies. When the physicians are 
not sure about exact boundary of an organ in a slice, they check 
adjacent slices and try to determine border based on them.) 

 

  
       (a)               (b) 

  
  (c)         (d) 

 
Fig. 3. a) Four manually segmented organs: Liver: Red, Right 
Kidney: Blue, Left Kidney: Green, Spleen: Orange; b) borders 

of these organs c) Result of the distance transform 
(skeletonization) d) Merging organ borders with skeletonization 

to show the effectiveness of the distance transform in the 
representation of abdominal organs. (Dilation operation is 

applied to figures b, c and d for better visual representation. 
Actually, each line has only one pixel thickness.) 

 
Finally, the algorithm switches back to Step 2, in other 

words, proceeds to the next (succeeding/preceding) slice if all 
the images are not segmented or a stopping criteria (i.e. number 
of the pixels that belong to the segmented object is smaller than 
a predefined value) is not reached. These four steps should be 
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repeated for each organ of interest since the method is capable 
of segmenting only one at once. 

 
4. Simulations and Results 

 
20 CTA series have been used in the evaluation of the 

proposed method. All of these CTA series contain images 
between 77 and 105 slices all of which are in DICOM format 
and have 3 to 3.2mm slice thickness. 

The features (i.e. mean, standard deviation and distance 
transform) are calculated for overlapping kernels of size 9x9. 
The size of the kernel is decided after extensive experimentation 
and by following the proposed sizes in literature [11, 12]. 

The MLP structure used for the segmentation consists of 3 
neurons at the input layer, 8 neurons at the hidden layer with a 
bias input between +/- 1. The biases are updated along with 
weights during error backpropagation [16]. The output layer 
consists of l neuron. The output of the network lies between 0 
and 1 for each pixel and it is thresholded by 0.5. Then, for an 
input region belonging to the organ of interest, the output 
becomes 1 for the organ of interest and 0 for the rest. 

The segmentation results are evaluated by using the area 
error rate (AER) [11], or in other words, by using Tanimoto 
coefficients. If we name the region segmented by the algorithm 
as Automatic Segmentation Result (ASR) and the region 
segmented manually as Manual Segmentation Result (MSR), 
then Defining a Region Of Union Region ROU as ASR � MSR 
and a Region Of Intersection (ROI) as ASR 
 MSR, AER is 
equal to: 

100%ROF ROIAER
MSR

−= ×  

In our evaluation, AER is calculated directly (without any 
boundary modification) between the manually and automatically 
segmented images.  

Figure 4 shows the shows the average AER for each patient 
data set (on a logarithmic scale) and Table 1 shows the statistic 
of the results.  

 
Table 1. AER percentages of the segmented abdominal organs 

of interest using proposed methodology 
 

AER (%) Mean 
AER  

Max. 
AER 

Min. 
AER 

Standard 
Deviation 

Liver 15.28 20.07 12.51 2.19 
Spleen 12.21 13.85 9.48 1.64 

Right Kidney 9.02 10.84 7.48 0.96 
Left Kidney 7.97 9.80 6.12 1.34 

 
The results show that the AER ranges for the organs of 

interest are segmented with fair performance. It should be noted 
that AER is a very sensitive error measure which is affected 
significantly even with a single pixel difference between ASR 
and MSR images. Concerning this fact, we can conclude that the 
right kidney and left kidney are segmented with high 
performance. This is mainly because of their relatively simpler 
shape. On the other hand, liver and spleen has more AER due to 
their complex size shape and orientation.  

     The results also show that the proposed method has shown 
promising performance at handling several difficulties. The 
method is especially useful when dealing with atypical size, 
shape and orientation. This is because of the adjacent slice 
information provided by the distance transform of the previously 
segmented slice. Pre-processing and post-processing steps are 
important in the improvement of the methodology. Although 
there is no application where the algorithm completely fails, it is 
possible that it might fail if the organ of interest is wrongly 
segmented in a slice.  
     The slice thickness is also an important factor. Slice 
thickness up to 3.2 mm will be fine and smaller values will 
increase the accuracy. On the other hand, values higher than 3.2. 
mm might cause problems to the limited adjacent slice 
information provided. 
 

 
 

Fig. 4. The AER values for each organ of interest at each of 20 
CTA datasets (plot is on logarithmic scale for better 

representation of differences and deviations  
 

5. Conclusions 
 

A robust and efficient method that can automatically segment 
the abdominal organs in any CTA series is introduced. The 
success rate is calculated as 85.86% for liver, 91.13% for right 
kidney, 92.33% for left kidney and 87.47% for the spleen. The 
robustness of the method follows from its capability of handling 
the challenges of abdominal organ segmentation by using a new 
training and classification strategy, namely patient oriented 
neural networks. This network learns the characteristics of a 
patient dataset for each slice in parallel to the segmentation 
process and adapts its parameters according to these 
characteristics. Our iterative segmentation algorithm uses 
classification of pixels (using a Neural Network i.e. Multi Layer 
Perceptron - MLP) together with adjacent slice information. The 
developed method gives promising performance for different 
modalities, varying contrast, dissected regions and atypical 
shapes. 

Results indicate that we have effectively overcome the 
challenging difficulties explained before. This performance is 
achieved with introducing the distance transform as a feature for 
each slice and then using this information in the succeeding slice 
to reveal three dimensional properties of the organs which can 
not be obtained by the set of slices processed individually or 
sometimes all together as a 3D data.  
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       (a)             (b)    (c)        (d) 

    
       (e)             (f)      (g)        (h) 

 
Fig. 5. Some examples of segmentation results, representing the wide variety in the same, Hounsfield range, size, position and 

orientation of the abdominal organs in CTA series a), b) liver, c), d) right kidney, e), f) left kidney, g), h) spleen.  
 

The classifier update at each step improves the robustness of the 
system which provides the possibility of high performance also 
for the CTA series coming from different modalities. 
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