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ABSTRACT 
This paper proposes a connection admission control (CAC) 
method for ATM networks based on the estimation cell loss 
ratio accordance with fuzzy logic theory. The cell loss ratio is 
estimated in a fuzzy inference scheme by using observed 
data of cell loss ratio. This method makes possible secure 
CAC, thereby guaranteeing the allowed cell loss ratio. In this 
paper, a fuzzy inference method is studied, based on a 
weighted average of fuzzy sets, in order to estimate 
possibility distribution of cell loss ratio. In contrast to 
conventional methods, the studied method can avoid 
estimating excessively large values of cell loss ratio and it 
can guarantee the allowed cell loss ratio in the CAC and 
attains higher multiplexing gain as much as possible. 

I. INTRODUCTION 

Asynchronous transfer mode (ATM) is a key technology 
for integrating broadband multimedia services (B-ISDN) 
in heterogenous networks, where multimedia application 
consisting of data, video and voice sources transmit 
information. ATM provides services to these sources with 
different traffic characteristics by statisticaly multiplexing 
cells of fixed length packets of 53 bytes. In ATM 
networks, transmission data from source terminals are 
divided into 48 byte length units and a header including 
destination address is added to each unit. Each 
transmission unit with its header, called a cell, can be sent 
at the allowed rate. The cells from the terminals are 
multiplexed asynchronously in the networks. Thus, ATM 
networks can support a wide variety of transmission rates 
and provide high transmission efficiency by asynchronous 
multiplexing. 

Although ATM networks have the advantages mentioned 
above, cells might be lost in ATM switches if cells are 
excessively fed into the networks. Due to the of 

broadband traffic pattern uncertainties and unpredictable 
statistical fluctuations of traffic flows can cause 
congestion in the network switches and transmission links 
[1]. In order to avoid this situation, the terminals are 
required to specify their transmission rates as traffic 
parameter, e.g., peak cell rate and average cell rate, in 
advances of transmission. According to these declarations 
of transmission rates, ATM switches judge whether the 
required quality of services (QoS), evaluated by the cell 
loss ratio (CLR) in this paper, can be achieved or not. 
Although it must be guaranteed that the QoS objectives 
are satisfied under the specified cell delay variation 
(CDV), this paper assumes for simplicity as a step that the 
traffic parameters are transformed by taking account of 
CDV or that CDV is removed or reduced by shaper [2]. 

The transmission rates are often classified into a number 
of classes on the basis of the transmission rates such as 
peak cell rate and average cell rate. Namely, terminals 
select one of the transmission rate classes in advance of 
transmission. When a call request comes from the 
terminals, ATM switches have to predict whether the 
required quality in CLR can be achieved or not if the call 
accepted. If ATM switches judge the required quality can 
be achieved, they accept the call. Otherwise, they reject 
the call. This process is called connection admission 
control (CAC). Therefore, CAC requires the estimation of 
CLR from the number of connections in each 
transmission rate class. 

In conventional methods, the estimation of CLR is often 
performed on the basis of analytical models of the cell 
generation process in terminals and ATM  switch 
architectures [3]. The cell generation process, however, 
has a wide variety of patterns and ATM switches have 
become complex in order to attain higher performance. It 
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makes the construction of the analytical models difficult. 
Moreover, the analysis requires approximation with 
excessive estimation of CLR. 

In order to solve the problems, fuzzy inference systems 
have been applied to the estimation of CLR. The 
conventional observation based methods, however, cannot 
always perform CAC guaranteeing the allowed CLR. This 
study considers the CAC based on fuzzy inference which 
can guarantee the allowed CLR [4]. 

In this paper, a fuzzy inference method is proposed in 
order to effectively estimate the upper bound of CLR 
from its observed data. This method is based on a 
weighted average of fuzzy sets. 

II. FUZZY INFERENCE APPROACH TO CELL 
LOSS RATIO 

Bandwidth allocation deals with determining the amount 
of bandwidth required by a connection for the network to 
provide the required QoS. There are two alternative 
approaches for bandwidth allocation: deterministic 
multiplexing and statistical multiplexing [5]. 

In deterministic multiplexing, each connection is 
allocated its peak bandwidth. Doing so couses large 
amounts of bandwidth to be wasted for bursty 
connections, particularly for those with large peak to 
average bit rate ratios. Deterministic multiplexing goes 
against the philosophy of ATM since it doesn’t take 
advantage of the multiplexin capability of ATM and 
restricts the utilizatiob of network resources. 

An alternative method is statistical multiplexing. In this 
sheme, the amount of bandwidth allocated in the network 
to a variable bit rate (VBR) source (statistical bandwidth 
of a connection) is less than its peak, but necessarily 
greater than its average bit rate [5]. Then, the sum of peak 
rates of connections multiplexed onto a link can be 
greater than the link bandwidth as long as the sum of their 
statistical bandwidths is less than or equal to the link 
bandwidth. 

The bandwidth efficiency due to statistical multiplexing 
increases as the statistical bandwidths of connections get 
closer to their average bit rates and decreases as they 
approach their peak bit rates. In general, statistical 
multiplexing allows more connections to be multiplexed 
in the network than deterministic multiplexing, thereby 
allowing better utilization of network resources [4]. 

The relation between CLR and the number of connections 
is often nonlinear. Thus, in the observation based CAC, 
fuzzy inference method must be applied to the estimation 
of upper bound of CLR. The CAC must guarantee the 
allowed CLR satisfying the traffic parameters of the 
transmission class. Even if the maximum value of 
observed CLR at each number of connections is used, it 
cannot guarantee the allowed CLR. From this point view, 
the estimation of the possibility distribution of CLR is 
needed in order to guarantee the allowed CLR in CAC. 

That is, if possibility distribution can be obtained, its 
upper bound can make possible the CAC guaranteeing the 
allowed CLR. 

The nonparametric approach also has been studied [1] for 
estimating the upper bound of CLR because the cell 
arrival process in practise is not specified. Altough this 
approach is effective to guarantee the allowed CLR, it 
tends to estimate excessively high CLR and results in 
lower multiplexing gain in a practical environment. Even 
in constructing the analytical models without use of the 
nonparametric approach, approximations have been often 
performed so as to guaratee the allowed CLR and make 
the multiplexing gain lower in practice. 

From the discussion above, the fuzzy inference approach 
is feasable. This is because the then-part of each fuzzy 
rule can give the possibility ditribution of CLR for the 
number of connections covered with the if-part in the 
fuzzy rule. Therefore, the inference consequence provides 
the estimated upper bound of CLR for the input of the 
number of connections. The conventional  methods tend 
to estimated CLR’s having excessively large values. In 
this paper, we propose a fuzzy inference method in order 
to solve these problems this inference method is based on 
a weighted average of fuzzy sets. It provides the useful 
proporties in its application to CAC [7]. 

In fuzzy inference for CLR estimation, if-parts define the 
fuzzy number connections xi  in transmission rate class Ci, 
whereas then-parts define the estimated CLR under the 
condition given by the if-parts. The following shows the 
examples of fuzzy rules [6]. 

Rule 1) If x1 is 250 then CLR is 10-5  

Rule 2) If x1 is 260 then CLR is 10-4  

Rule 3) If x1 is 280 then CLR is 10-3  

Rule 4) If x1 is 300 then CLR is 10-2  

The if-then fuzzy rules adopted in this paper will be 
explained simply hereinbelow: 

Rule 1) If x is mf1 then CLR is mf1 

Rule 2) If x is mf2 then CLR is mf2 

Rule 3) If x is mf3 then CLR is mf3 

Rule 4) If x is mf4 then CLR is mf4 

Equation (1) gives the average of fuzzy sets yi (i=1,2,...), 
weighted by membership degree wi, where Σ denotes al 
algebraic sum. The weighted average method is formed 
by weighting each membership function in the output by 
its respective maximum membership value. 
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A fuzzy inference method based on a weighted average of 
fuzzy sets is proposed. Its inference process consists of 
the following steps [6], [7]. 

1) Calculate the adaptabilities (wi) of the fuzzy rules 

2) Calculate the inferred results (yi) of the fuzzy rules 
on the basis of the adaptabilities (wi) and the 
membership functions of the consequent 

3) Obtain the overall inferred result (CLR) as weighted 
mean by yi (CLRi) and wi. 

The following Tables 1 and 2 show the traffic 
characteristics of source and the specification of the 
experiments for sources. 

Table 1. Traffic chacteristics of On-off sources 
Traffic 
class 

Peak rate 
(Mbps) 

Mean rate 
(Mbps) 

Burst length 
(cells) 

Voice 0.064 0.022 58 
Data 10 1 339 

Image 2 0.087 2604 

Table 2. Specification of the experiments for sources 
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A1 Voice 250-300 0.8-0.95 7 0.00914  Fig. 3 

A2 Voice 15-25 0.05-0.08 0.7 0.0914 Fig. 4 

A3 Data 160-300 0.5-0.85 350 0.28 Fig. 5 

A4 Data 8-26 0.15-0.5 52 0.192 Fig. 6 

A5 Image 4-20 0.05-0.25 30 0.133 Fig. 7 

A6 Image 80-220 0.25-0.65 7 0.285 Fig. 8 

 
(a) 

 
(b) 

Figure 1. Examples of the input variable (x) and output 
variable (CLR) membership functions (determined in 
Matlab Program). 

 
Figure 2. Example of the estimated value of CLR 

(CLR=10-3.5) based on fuzzy inference system. 
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Figure 3. Simulation A1 (Voice sources, C=7 Mbps). 
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Figure 4. Simulation A2 (C=0.7 Mbps). 
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Figure 5. Simulation A3 (Data sources C=350 Mbps). 
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Figure 6. Simulation A4 (Data sources C=52 Mbps). 
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Figure 7. Simulation A5 (Image sources C=30 Mbps). 
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 Figure 8. Simulation A6 (Image sources C=0.7 Mbps). 

The figures 3, 4, 5, 6, 7, 8 show the estimation of upper 
bound of CLR belonging to the different sources. 
Therefore, fuzzy infence approach to estimating the 
possibility distribution of CLR can be applied all kind of 
traffic sources. 

The experiments described in this paper refer to a single 
ATM link and the QOS is expressed in terms of cell loss 

at the output buffer of an ATM switch. The traffic sources 
are VBR sources, modelled as On-Off sources described 
by the peak and mean bit rates and mean burst length. 

A basic challenge associated with CAC based on a  
heuristic method is knowledge elicitation, i.e. the transfer 
of knowledge from some source into a fuzzy rule base, of 
the relationship between traffic offered to an ATM switch 
and obtained network performance, e.g. cell losses. This 
is because all the knowledge that can be obtained on 
ATM traffic is expressed in terms of input/output data 
pairs (examples) collected from measurements. The 
Fuzzy inference approach to cell loss ratio presented, uses 
an automatic design of the associated fuzzy system based 
on a method of learning from examples. 

The results obtained by fuzzy inference method were 
compared with measured CLR values versus the number 
of connextions and used as the training set for the fuzzy 
tool. The results obtained using this method are plotted in 
figures Figure 3 to Figure 8. The number of sources and 
the link capacity values were chosen in order to obtain a 
range of cell loss values between 10-2 and 10-8. 
 

III. CONCLUSION 
This paper has proposed a method for connection 
admission control based on fuzzy inference. In order to 
estimate the upper bound of CLR from observed data, a 
fuzzy inference method was proposed on the basis of a 
weighted average of fuzzy sets. Some proporties of the 
proposed inference method are presented, which are 
useful in estimating the upper bound of CLR. In contrast 
to conventional methods, the proposed method can 
control the width of its final inference consequence by 
adjusting the width of fuzzy sets in then-parts. Moreover, 
the inference consequences can represent the possibility 
distribution of CLR in convex forms. These properties 
have an important role in the proposed CAC method. 

By applying the CLR estimation method proposed, the 
CAC method has been considered. Although the CAC 
method proposed here has been discussed mainly in the 
case of one transmission rate class for simlicity, it can be 
extended for a number of transmission rate classes. 
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