
 1

VISUAL BASIC APPLICATION OF THE EARLEY ALGORITHM

Zeynep ALTAN
zaltan@istanbul.edu.tr

Istanbul University, Faculty of Engineering,
Department of Computer Science,

34850 Avcılar, Istanbul

Key Words: Recognition and Parsing, Earley Algorithm, Computational Linguistics, Formal Language
Theory.

ABSTRACT

As abstract systems have become more sophisticated,
natural language processing systems have been one
of the most interesting topics of computer science.
Because of the contributions of Turkish to
computational applications and the language’s rich
linguistic properties, Turkish studies are approved in
linguistic theory. This study presents a Visual Basic
application of the Earley Algorithm that parses the
sentences being independent from the language in a
visual environment.

I. INTRODUCTION
The purpose of the abstract systems has been the
simulation of the words or the sentences to obtain
the speech recognition algorithms. Context-Free
Grammars (CFGs) which are widely used to
parse the natural language syntax are the
fundamental grammars of these systems.
Although other types of the grammars in
Chomsky hierarchy1 are fairly powerful, they
have some disadvantages during the modelling.
For example; it may not formally be possible to
model the syntax of sentences by context-
sensitive grammar. Because, time complexity
problem may arise while the algorithm parses a
sentence. Therefore, it is required to choose the
grammars with less time complexity instead of
the
grammars that parse the text more effectively
than others.
 The Earley Algorithm, which was constituted
by Jay Earley as his Ph. degree thesis, has also
been built by using context-free grammar [6]. A
lot of artificial intelligence researchers have been
making use of this algorithm in their studies,
which are about speech recognition. The Earley
Algorithm’s top-down control structure depends
on both CKY parsing and Knuth’s LR (k)

1 Right Linear, Context-Free, Context-Sensitive and
Unrestricted Grammars define the Chomsky hierarchy of
grammars.

algorithm (bottom-up parsing methods).2 This
algorithm has some advantages according to
other context-free based algorithms. For
example; Knuth’s LR(k) algorithm can only
work on some subclass of grammars, so they can
be done in the time n and, they are called as
restricted algorithms including a lot of
ambiguities. CKY algorithm parses any string
with the length n in time proportional to O(n3)
[7]. The time complexity of the Earley
Algorithm for CFGs also depends on a number of
special classes of grammars. If the parsing steps
are defined according to an unambiguous
grammar, the processes execute in O(n2)
reasonably defined elementary operations, but for
ambiguous context-free grammars it is required
O(n3) elementary operations, when the length of
the input is n. Another advantage of the Earley
Algorithm is the definition of the grammar. CFG
grammar used by this algorithm does not require
to be defined in the Chomsky Normal Form
(CNF) 3.
 Pitsch presented a generalisation of the
context-free LL (k) notion onto coupled context-
free grammars by constituting the steps of the
predictive context-free parsing machine
according to Earley parser [5]. Stolcke defined
an extension of Earley’s parser for stochastic
context-free grammars computing the prefix and
substring probabilities, which are suitable for the
original Earley chart structure [1]. Thus, the
probable parses of substrings can be ruled out by

2 CKY (Cocke -Kasami-Younger) Algorithm is a simple
procedure for recognising strings in a context-free language,
which is in Chomsky Normal Form; thus the derivation tree
of any string will essentially be binary.
Knuth’s Algorithm works on LR (k) grammars; i.e.
rightmost derivations of sentences are obtained.
3 A context-free grammar G = (N,Σ,P,S) is said to be in
Chomsky Normal Form, if every rule is in one of the
following forms:
X → YZ, X→a for X,Y,Z∈ N and a ∈∑ .

mailto:Zaltan@istanbul.edu.tr

 2

the top-down modelling. Briscoe and Carrol
developed an interactive incremental parsing
system constructing the LALR (1) parse table
defined by ANTL (The Alvey Natural Language
Tools) grammar. This system includes lexical,
morphological and syntactic analysis of English
[8].
 Most of the recognition algorithms that
depend on the formalism of tree-adjoining
grammar (TAG)4 use the steps of Earley
Algorithm to parse the sentences according to the
compiled grammar. Schabes and Schieber
studied the extended derivation of TAGs with the
application of Earley Algorithm deducting the set
of Earley items on the corresponding grammar
[9]. Minnen developed the predictive left-to-
right parsing of the restricted TAG(LD/LP)
(local dominance/linear precedence) with an
algorithm, which was closely related to the
Earley parsing [4]. Thus the schematic
representation of trees and the combination of
these trees with the adjunction operations could
allow to the various permutation of the
elementary structures.
 Because of the contributions of Turkish to
computational applications and the language’s
rich linguistic properties, Turkish studies are
approved in linguistic theory. This study presents
a Visual Basic application of the Earley
Algorithm parsing the sentences in a visual
environment. Since the tool is independent from
the language, we can define grammar rules both
for Turkish and English. Our next study will
focus on the extension of this algorithm for
TAGs constituting a similar recogniser, so the
advantage of TAGs according to CFGs will be
adapted to the recent application. We are
planning to test the TAG(LD/LP) recognition
algorithm which LD/LP are defined as
constraints and structure, respectively5. After we
described the grammar rules in Turkish
according to morphological properties of the

4 If the sentences to be parsed are generated as small pieces,
which are called elementary trees out of the phrase structure,
tree-adjoining grammar (TAG) is defined as formalism. Then
these small pieces with some constrained conditions are
composed to form larger pieces of tree structure.
5 The use of the top-down approximation of the Early
Algorithm can form a large number of unnecessary items to
be predicted and unsuccessful intermediate results can be
obtained when the grammar size to be parsed is too large.
But the basic idea of parsing with TAG structure reduces
these unnecessary predictions with the adjunction operations.
The adjunctions for all derivations are eliminated to create
new relations between the supertrees of the roots and the
subtrees of the foots.

inflected words [10], the most important
disadvantage of using Early Algorithm has been
eliminated. In this way, the declaration of all
words in the input sentence does not require;
since the root words are saved in the database,
the number of the grammar rules including
terminal categories will reduce and become
general containing only suffix rules. Verb
inflections in Turkish may also be defined by
grammar rules. The verb in the input sentence,
which precedes the suffixes, is analyzed as an
invariant root by querying the database, and the
following suffix particles may indicate voice
(causative, reciprocal, reflexive, passive),
modality (necessitive, abilitative, conditional),
negation, tense-aspect mood and person/number.
This property also reduces the number of rules
defined for terminal categories including verbs.
As a result, morphological analysis is very
meaningful for the determination of part-of-
speech structure in syntactic parsing, and for the
semantic analysis of a sentence. Information
about verbal inflection is especially important for
the word order concept [11].

II. TOP-DOWN APPROACH OF THE
EARLEY ALGORITHM

 Any context-free rule format can be adapted
to the Earley Algorithm to parse a string or a
sentence with the productions of given grammar
building the left-most derivation of the strings
[2].
 Let Ei,j be any state in the state set which is
derived from a consistent production. Then it can
be represented as:

E i ,j : A → α .β ,
where i is the initial position of any nonterminal
A which is expanded to supply the condition
 i ≤ j ≤ n , i < n (n is the last symbol of input
string) and, j is the current state of which any
string in the form x = w 1w 2…. wj-1 begins to
process.
 The expansion of A is repeated until the
preceding sentential form is completed to yield a
derivation form x =w 1w 2…. wn . Any production
of the grammar gives a left most derivation as:
 S⇒ *w1….wi Aδ⇒ *w1 ….wi αβδ ⇒ *w1.…wj βδ
[3].
 Thus the dotted production A → α .β (either
α or β may be empty) is in E i ,j . Each state in
the Earley Algorithm represents the following
components:
(a) production, which is derived from the right of
input string scanning a part of x= w1w 2….wn ;

 3

(b) a point that shows which part of the
production’s right side has been recognised so
far;
(c) a pointer, back to the position looking for the
production in the input string ;
(d) a lookahead (k-symbol) string, which can
be used instead of successive production.
 In this application of the Earley Algorithm, the
lookahead string, which gives a property of
Earley states, has been neglected and a matrix
form with two indices has been used as the
pointer.

III. FORMAL EXPLANATION OF THE
EARLEY ALGORITHM

Let G = (N,Σ, S, P) be a CFG without containing
Λ-productions. If the input string is given as
x =w 1w 2…. wn ∈ Σ *, then the states Ei,j with
the conditions 0≤i≤j≤n and i<n are calculated as
follows:
(a)Initialisation: For ∀ P: S → γ ;
 place E 0,0 : S→ .γ
Step (b) is repeated until no new element is
added to E 0,0 .

(b)Prediction: For ∀ A∈ N B→ . A β is in E 0, 0
 and, for ∀ P : A→ γ ;
 A → . γ is added to E 0,0

 Then for ∀ j>0 and ∀ i,k, after the
construction of Ei,k.; the steps (c), (d) and (e) are
repeated until no dotted productions are added
to E0,j , E1,j…,Ej,j
(c)Scanning : If Ei ,j-1 : A → α . xj β;
 the state A → α xj . β is added to Ei,j
(d) Prediction:For A∈ N, if B→α .Aβ is in Ei,j;
 for ∀ P: A → γ , A → .γ is added to E j, j
(e) Completion: If Ei,j :A→ x. is the completion
 state and B → α . Aβ is in Ek ,i ;
 B → αA .β is added to Ek ,j

IV. PARSING WITH NEW TOOL
When the parser is run, the project file called
“earley.vbp” is opened including three different
form-modules “about.frm”, “earley.frm” and
“print.frm” in it. Generally form files of a project
are saved in the project directory. The file named
“about.frm” includes the definition of the control
objects in the package. Command, frame, label
and picture are the objects of this form and each
of them defines different procedures.
“earley.frm” includes the codes of the algorithm
and the general object constituting all of these
codes. The other objects in this form represent
the codes of menu elements. The third form-
module, “print.frm”, organises the outputs.

 Visual Basic is extremely flexible in
designing the user interfaces and makes possible
to add user interface components. We can add
these elements, for example; text boxes, dialog
boxes, list boxes and sign boxes, by using control
devices. One of the advantages of programming
with Visual Basic is the speed in developing and
testing of an application. Before testing, it is not
required a condition that the application must be
finished. When a new property is added to the
application, this property is tested; if we change
something on it, this change can also be tested
again.
 The application of the Earley Algorithm
using this parser tests many different sentences
both for Turkish and English. After the sentences
and the grammar rules describing these sentences
have been defined, the parsing procedures of
given examples are completed successfully. The
basic purpose of the constituted parser is the
running of the algorithm as fast as possible. If it
is required to use this parser for any text
recognising problem, the agreement of each
sentence with previously defined grammars is
tested, and then the parsing process is executed.
If the input sentence fits none of the grammar
rules, new grammar rules for this sentence are
defined. Different screen outputs of the analysis
results for English sentences can be seen in the
Appendix.

V. CONCLUSION
In this study, we present an application of the
Earley Algorithm by using Visual Basic
programming language. The most important
property of this structure is the generation of the
left most derivation tree from top-down and left
to right, and the main purpose of the algorithm is
to recognise the sentences in different languages
according to their semantic and lexical features.
 During the execution, in case of the
complication for the next action of the parser, it
is ambiguous which production must be chosen.
This nondeterministic situation increases the
number of searched processes as unsuccessful
intermediate results of the Earley analysis. As the
applications use large grammars, Earley
recognition steps will include a lot of ineffective
processes. It is possible to eliminate this negation
defining a deterministic top-down strategy by
using a context-free LL(k) parsing algorithm.
 Syntactic structures of the sentences are also
an important collapse of the Earley Algorithm.
This technique doesn’t include transformational
grammar which contains two components, one

 4

of which is called the base component and the
other, transformational component. But we
eliminated this problem by analysing the
morphological properties of the words. We can
define transformational grammar rules including
inflectional suffixes of Turkish words.
Traditionally, the analysis of word structure is
divided into two basic fields as inflection and
derivation. Therefore, the morphological
structure of each word may include elements
such as prefix, suffix, infix, or even a separate
root, and these elements can modify the meaning
of the basic root or stem of the word. The tool
that we developed can analyze all the sentence
structures in case of correct definitions.
 If we don’t define the rules according to the
morphological properties of the words, sentences
vary with respect to the tense (present or past),
the number (singular or plural), and the aspect
(question, negation, passive, active or statement).
It is also difficult to answer the following
question: How can anyone release that all of
these sentences are similar, even though there are
differences between their forms and meanings?
In this case, the grammar rules of the algorithm
include lexical components for terminal
categories as N→{chicken, boys, girl, house,
table}, Det→{a, the, an}, V→{ate, borrow,
gives}.

REFERENCES
1. A. Stolcke. (1995).“An Efficient Probabilistic

Context-Free Parsing Algorithm that
Computes Prefix Probabilities” Assoc. for
Computational Linguistics, Vol. 21, pp.
165-200.

2. A.V. Aho and J.D. Ullman. (1972). The
Theory of Parsing, Translation and
Compiling. Prentice Hall, New Jersey.

3. G.K. Krulee. (1991). Computer Processing of
Natural Language, Prentice Hall, New
Jersey.

4. G. Minnen. (1994). “Predictive Left-to-Right
Parsing of a Restricted Variant of
TAG(LD/LP)”, In Computer Intelligence,
Vol. 10, Num. 4, pp. 535-548.

5. G. Pitsch. “LL (k) Parsing of Coupled-
Complex -Free Grammars”, In Computer
Intelligence, Vol. 10, Num 4, pp.563-578.

6. J. Earley. (1986) “An Efficient Context-Free
Parsing Algorithm”, B J.Grozs, K.S.Jones
and B.L.Webber (eds.), In Readings in
Natural Language Processing, pp.25-33

7. R.N. Moll, M.A. Arbib, and A.J. Kfoury.
(1988). An Introduction to Formal Language
Theory, Spring-Verlag, New York.

 8. T. Briscoe and J. Carrol. (1993)“Generalised
Probabilistic LR Parsing of Natural Language
with Unification-Based Grammars”, In Assoc.
for Computational Linguistics, Vol. 19,
Num.1, pp.25-58.

 9. Y. Schabes and S. M. Shieber. 1994. “An
Alternative Conception of Tree-Adjoining
Derivation”, In Assoc. for Computation
Linguistics, Vol. 20, Num. 1, pp. 91-124.

 10. Z.Altan and K. Aydın . (2000). İsimlerde
Çekim Eklerinin Oluşturduğu Ses
Olaylarının Visual-Basic Ortamında
İncelenmesi. In Elektrik-Elektronik-
Bilgisayar Mühendisliği Sempozyumu,
Bursa, Turkey, pp. 307-312.

11. Z.Altan. (2001, in print) “The Role Of
Morphological Analysis In Natural
Language Processing” In Anadolu
University Journal of Science and
Technology, ISSN 1302-3160.

 5

APPENDIX

(a) The grammar rules and the parsing result of the sentence “ a circle touches a triangle”

(b) The screen output of the analysis result of the sentence“ the boys in the kitchen crushed green grapes
into a bowl”

 6

 (c) The interface before the parsing process began for the sentence “the naughty boys in the kitchen broke
the window with a ball”. It is also possible to parse the sentence, which has no meaning “the yellow book
on the table dropped the chair from the wall” with the same grammar rules.

(d) The interface after the parsing has been completed for the sentence “the naughty boys in the kitchen
broke the window with a ball”.

