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ABSTRACT 
 In this paper we consider the exponential stabilization 
of control loops with time varying state delay and both 
matched and unmatched parameter uncertainties. We focus 
on linear control, and derive new sufficient conditions 
guaranteeing arbitrary degree of stability. The results could 
easily be extended to nonlinear controllers of the min-max 
type. 

 
I. INTRODUCTION 

 Control loops with time delays are common in 
chemical processes and in other transport phenomena. 
The modeling of some of these systems is not a simple 
task. To accommodate imperfect modeling, uncertain 
time varying parameters are commonly introduced into 
the model. 
 
In the chemical and related industries linear controllers 
are widely used.  Therefore there is an interest in the 
exponential stabilization of uncertain dynamical systems 
having state delays by linear controllers.   
 
 Cheres et al. [1] proposed a class of discontinuous 
nonlinear controllers which guarantee exponential 
stability with arbitrary stability degree for 
systems/control loops with state delays and matched 
uncertainties (SDMU). But these controllers cannot be 
directly implemented. Instead they proposed a class of 
continuous controllers [2], which approximate the 
discontinuous ones.  The synthesis of such a continuous 
controller that guarantees a desired stability degree 
requires the knowledge of the bound of the delay 
variation. 
 
        Wu and Mizukami (WM) [3], [4] employed one 
controller from that class of continuous controllers. In [3] 
they derived directly sufficient conditions for the 
exponential stability of those systems but without delays, 
while in [4] they considered only asymptotic stability of 
SDMU systems. Sufficient conditions were derived 
directly for the nonlinear controller. Also they present a 

class of linear controllers, which retains uniform ultimate 
boundeness of SDMU systems, when external 
disturbances are also present. The design of their 
controllers does not depend on the upper bound of the 
delay, and this was referred to as a design advantage.  But 
this independence stems from the fact that only stability 
with zero degree was considered.  In practice, however, it 
is common to design a controller for some positive decay 
rate. The controllers in [4] are not applicable to such 
cases.  
 
In this paper we develop sufficient conditions 
guaranteeing an arbitrary degree of stability for time 
varying uncertain systems with time varying uncertain 
state-delays (SDU) and linear controllers. The conditions 
are derived using the Razumikhin approach  [5]. The 
derived conditions are general, as they are applicable to 
both matched and unmatched uncertainties, to both 
systems with state delay and without state delay and for 
asymptotic as well as exponential stability. In view of the 
derived conditions, a controller design that is based solely 
on matched uncertainties [1], [4] may become unstable in 
the presence of  ‘slightly’ unmatched uncertainties. 
 
The example in [4], which consists of an uncertain time 
varying system with a time varying state delay, is 
considered and based upon the conditions derived in the 
paper a linear controller with a predetermined stability 
degree is designed and evaluated. This example is also 
used to compare between the new stability conditions of 
this paper and those presented in [4], and to demonstrate 
the influence of the exponential stability on the controller 
design and the performance of the system. 
 

II. MAIN RESULTS 
In this section new sufficient conditions for an arbitrary 
degree of stability of SDU systems are derived. The 
uncertain system is represented by the following 
differential equation: 
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where: t is the elapsed time, nRtx ∈)(  is the current 
value of the state, u (t) ∈  Rn  is the control function, 
( , , )v w r ∈ ψ   is the uncertain vector, and  LR∈ψ  is 
a compact set. )(),( tBtA is a continuous uniformly 
completely controllable pair with appropriate dimensions.  
The system matrix uncertainties 

),(),,(),,( trBtwDtvA ∆∆∆  are continuous in all their 
arguments. 

h is any continuous bounded function hh
"

≤≤0 , where h
"

is a known upper delay bound.  The uncertain matrices 
are decomposed as follows: 
 

),(~),()(),( tvAtvHtBtvA ∆+=∆                              (2a)                                                                                          

),(~),()(),( twDtwFtBtvD ∆+=∆                                       (2b)                                                                                                    

),(~),()(),( trBtrEtBtvB ∆+=∆                                          (2c)                                                                                              
 
The stability degree β  is now used to define the 
transformation: 

)(txez tβ≡                                                                  (3) 
                                                                                                                                  
Differentiating eq. (3) we obtain: 

zezex tt !! βββ −− +−=                                    (4) 
                                                                                                       
Substituting (3)-(4) into (1) and arranging terms yields: 
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For clarity purposes we omit the arguments in the sequel. 
We select (6) as our Lyapunov function: 

PzzV ′=                                                                       (6)                                                                                            
where the positive definite matrix P  is the steady state 
solution [6] of the following Riccati equation  

IPBPBIAPPIAP −=′−+++′+ ][][ ββ!        (7)                                                                                            
and I  is the identity matrix. 
 
The derivative of V along a solution of (5) satisfies: 
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We synthesize the following linear controller 

αγ βteu −−=                                                           (9)                          
with  

PzB′=α                                                                  (10)                         
     
Substitution of the decomposition (2) and the control law 
(9)-(10) in (8) yields: 
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We rewrite (11) as follows                     
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Where a, c, d are scalars. 
 
We recall that a Rayleigh quotient is bounded by its 
associated minimal and maximal eigenvalues [7].  Using 
this property we may write the conditions for positive 
definiteness [8] of the two matrices in (12) as follows: 
  

0>a                                                                           (13) 
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Hc λ                                             (14) 

0>d                                                                           (15) 
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and the relevant notations are: 
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If the negative definite terms in (12) are omitted then 
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Following Razumikhin  [5] we assume that the control 
law does not render the stability of the system. Hence, 
roughly speaking the function V is increasing along the 
system trajectories. This can be translated to the 
following inequality [1], [4]: 
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and •  is the spectral norm.  
 
Inserting (19) into (18) leads to 
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 If the right hand side of (20) is non-positive, a 
contradiction with our assumption that the system is 
unstable results.  
 
The above discussion is now summarized in the 
following theorem: 
 
Theorem:  Consider system (1), and suppose there exist 
scalars a, d >0 such that the following conditions are 
satisfied: 
  
 )(tλ  > -1 for every t>0.                                      (21)                                                                                                  
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where P  is the steady state solution [6] of the Riccati 
equation (7). 
 
Then the control law: 

              )(tPxBu ′−= γ                                      (24)  
renders system (1) with stability degree β . 
 
Proof: The proof follows from the preceding discussion. 
Formally the proof may be obtained by using Razumikhin 
theorems [5], Lemma 1 and Observations 1-2 of  [1].  
 

III. EXAMPLE 1: SYNTHESIS OF A ZERO 
STABILITY DEGREE CONTROLLER 

In order to compare between the results of our controller 
synthesis and the one in [4], the special case of 
asymptotic stability is discussed in this example. Among 
other things we demonstrate that, as in [4], the obtained 
controller is completely independent of the time-varying 
delay bound.  
The time-varying system presented in [4] is discussed:  
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The delay function is given in Fig. 1, 2ˆ =h , and the 
initial conditions of the states are: 

.  0ˆ    ,)]cos()cos([)( ≤≤−= thtttx  
This system has only matched uncertainties, i.e. ,
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and the matched parts are given by: 
 [ ]00=H  , )sin(5.01 tE −=  ,

[ ])3cos()3cos( ttF =  

Thus 2  ;5.0 2 == Fλ   and the rest of the uncertain 
matrices are zero. 
 
If only zero stability degree is required, then inequalities  
(22)-(23) leads to: 
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stabilizes the system, and clearly γ  larger than the one in 
(25) stabilizes the system too. 
 
Note that WM [4] used the same control but obtained a 
higher controller gain given by: 
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If the uncertain matrix B∆  is unmatched, the sign of the 
expression:   

]~~[min min PBPBPBBP
r

′∆+′∆λ  in condition (23) will 

dictate which gain to select and whether a stabilizing gain 
exists. However if no information is given on the 
uncertainty, the lowest possible gain (25) is preferable in 
view of inequality (23). 
 
To implement the control law (24) we approximate the 
steady state solution of the Riccati eq. (7) with .0=β  It 
can be approximated, after some time period, by any 
special solution with a nonnegative definite terminal 
condition [6].  For comparison we use the same terminal 
condition as in [4], i.e. the zero matrix. The Riccati eq. is 
solved backwards in time for 40 s. Since only the steady 
state portion of the special solution can be used, the 
simulation of the system is terminated after 15 s.  
The state trajectories obtained with our control and the 
one in [4] are close and are depicted in Fig. 2. Note that 
the controller is independent of the delay bound. That is, 
even for extremely large delay values the control will still 
render the system at zero stability degree.  
 
IV. EXAMPLE 2: SYNTHESIS OF CONTROLLER 

FOR A STABILITY DEGREE OF 1 
We use the system of the previous example, and require a 
practical decay ratio of the trajectories, i.e. a positive 
stability degree. For conveniently we require the system 
to have a stability degree of . 1=β  
This leads to the following inequalities: 
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Thus a controller gain of at least  

   
3

1)10(6.54 32 ++=
−λγ                                      (27)                       

should be used.  
  



The Riccati equation (7) is solved with zero terminal 
condition and . 1=β  Since the initial condition of the 
state are arbitrary, the controller gain (27) may become 
very large at t=0.  This is impractical; therefore the 
controller absolute output value is restricted to be less 
than 10 (this value was also the maximal controller 
amplitude in the previous example). The controller 
outputs are presented in Fig. 3. Note that almost the same 
output amplitude is required in all cases, but the state 
trajectories differ significantly. As shown in Fig. 2, the 
state norm in this case settles down to the ‘zero 
neighborhood’ in 10 s, while the settling time for the zero 
degree of stability controllers is much longer. 
 

V. CONCLUSIONS 
In this paper new sufficient conditions for the exponential 
stability of uncertain time varying systems with state 
delays and linear control were derived. These conditions 
generalize all the previous conditions published in the 
literature. The conditions are applicable to both matched 
and unmatched uncertainties. It is demonstrated that 
control gain in the matched cases is bounded from below, 
whereas in the unmatched cases it may be bound from 
above depending on the satisfaction of condition (23). 
The conditions derived here for linear control can be 
extended to nonlinear control of the min-max type [1] 
using the same techniques. 
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