Beslemeden Beslemeye Giriş Katlı Bir CMOS FTFN Tasarımı ve Topraklanmış Endüktans Uygulaması

Mustafa Sayginer¹

Mustafa Altun²

^{1,2,3}Elektronik ve Haberleşme Mühendisliği Bölümü İstanbul Teknik Üniversitesi, İstanbul

¹e-posta: sayginer@itu.edu.tr ²e-posta: altunmus@itu.edu.tr

³ e-posta: kuntman@itu.edu.tr

Özetçe

Bu çalışmada, literatürde yer alan Dört uçlu yüzen nulör – *Four Terminal Floating Nulör (FTFN)* yapılarına alternatif olacak şekilde beslemeden beslemeye geniş bir giriş gerilim aralığında sabit giriş geçiş iletkenliğine – g_{mi} değerine sahip ($g_{mi} = 2.015$ mA/V, $\Delta g_{mi maks} = +0.55$ mA/V) bir FTFN yapısı tümleştirmeye uygun bir biçimde 0.35µm CMOS teknolojisi ile tasarlanmıştır. Tasarımı yapılan devrenin başarımı, gene önerilen bir topraklanmış endüktans benzetimi kullanılarak üçüncü dereceden bir yüksek geçiren süzgeç yapısında gösterilmiştir.

1. Giriş

Dört uçlu yüzen nulör elemanı ya da ideal nulör elamanı literatürde Yüzen İşlemsel Kuvvetlendirici - Operational Floating Amplifier (OFA) olarak da bilinmektedir [1]. Aktif elemanların nulör eşdeğerlerinin kullanılması özellikle aktif devre sentezi açısından araştırıcılara çeşitli olanaklar sunmaktadır. Örneğin Ek devre dönüşümü - Adjoint Network Transformation yöntemiyle gerilim-modlu yapılar ile akımmodlu yapıların birbirlerine dönüştürülmesi işlemi aktif elemanların nulör eşdeğerleri kullanılarak kolaylıkla mümkün olmaktadır [2, 3]. Bir nulör elemanında dört ucun da yüzen olduğu duruma karşılık gelen FTFN elemanı çeşitli yöntemlerle sentezlenebilmektedir. Beslemeden çekilen akımına bakılarak – Supply Current Sensing Method (SCSM) FTFN yapılarının oluşturulması ve iki akım taşıyıcı kullanarak gerçekleştirilebilen FTFN elemanları (AD844 elemanı ile) literatürde en sık karşılaşılan uygulamalardır [4-11]. Yukarıda bahsi geçen ve daha çok ayrık tasarımlara yönelik olan FTFN gerçeklemelerinin yanı sıra, tümleştirmeye uygun olacak şekilde CMOS ve bipolar teknolojilerde gerçekleştirilebilen tümleşik FTFN yapıları da araştırıcılar tarafından önerilmiştir. Çam ve Kuntman tarafından önerilen iki ayrı CMOS yapı ile (maksimum 160mA/V geçiş iletkenliği) [5, 6], Jiraseree-Amornkun ve Surakampontorn'un önerdiği 120mA/V geçiş iletkenlikli beslemeden beslemeye girişi olan CMOS yapısı [7], gene çok yüksek geçiş iletkenliği değerine sahip (3000A/V) bir CMOS FTFN yapısı Saygıner ve Kuntman tarfından daha önce önerilmiştir [8].

Bu çalışmada ise, görece sabit geçiş iletkenlikli $(\Delta g_{mimaks}/g_m \approx \%25)$ ve beslemeden beslemeye girişli bir CMOS FTFN elemanı toplam geçiş iletkenliği değeri 370mA/V ve 3dB kesim frekansı 1.8MHz olacak biçimde tasarlanmıştır. Yapının başarımını göstermek amacıyla FTFN elemanı kullanılarak oluşturulabilen yeni bir topraklanmış

endüktans yapısı önerilmiş ve yapının bir uygulaması olarak da 3. dereceden yüksek geçiren bir süzgeç yapısı kullanılarak FTFN elemanı SPICE ortamında test edilmiştir.

Hakan Kuntman³

2. Devre Tanımlaması

FTFN elemanı için sembolik gösterim ve nulör modeli sırasıyla Şekil la ve lb'de gösterilmiştir. Uç tanım bağıntıları açısından bakıldığında FTFN elemanı için aşağıdaki bağıntılar geçerli olacaktır.

$$v_X = v_Y$$

$$i_Z = i_W$$

$$i_X = i_Y = 0$$
(1)

Nulör elemanı tanımı gereği, noratör ve nulatör çiftinde nulatörün uç empedanslarının herhangi bir değerde bulunabilmeleri söz konusu olabilir. FTFN elemanında çıkış Z ve W uçları akımlarının eşliği dolayısıyla Z ve W uçları genellikle yüksek empedanslı olacak şekilde tasarlanmaktadır.

2.1. CMOS FTFN Giriş Katı

Besleme aralığı boyunca görece düşük Δg_{mi} giriş geçiş iletkenliği değişimine sahip bir giriş katı CMOS yapıda Şekil 2'de gösterildiği gibi oluşturulmuştur. Ortak işaret giriş gerilim aralığını arttırabilmek için N-kanallı M1-M4 giriş tranzistor çifti ile P-kanallı M2-M3 giriş tranzistor çifti paralel bir yapıda devrede yer almaktadır. Bu şekilde bir yerleşim ile ortak işaret giriş geriliminin yüksek değerlerinde N-kanallı tranzistor çifti, düşük değerlerinde de P-kanallı tranzistor çifti etkin olacaktır. Giriş ortak işaretinin yüksek ya da düşük olmadığı değerlerinde ise hem N-kanallı hem de P-kanallı tranzistor çifti çalışacaktır [9].

Şekil 1: a) FTFN Sembolü. b) Nulör eşdeğeri

Şekil 2: Önerilen FTFN yapısı için giriş katı.

Giriş katı için yukarıda sözü edilen ve ortak işaret giriş geriliminin besleme aralığında alabileceği farklı değerleri için tanımlanan üç ayrı durum, giriş geçiş iletkenliğinin analitik ifadesinde aşağıda gösterildiği gibi incelenebilir.

$$g_{mi} = g_{mN} + g_{mP}$$

$$g_{mi} = \sqrt{K_N I_N} + \sqrt{K_P I_P}$$
(2)

Burada *K* ifadesi (3)'de verildiği gibi olacaktır.

$$K = \mu C_{ox} \frac{W}{L} \tag{3}$$

Denklemlerde görülen I_N ve I_P akımları, N ve P-kanallı tranzistor çiftleri için kuyruk akımlarını göstermektedir. Buna göre girişteki N ve P-kanallı çiftlerden yalnızca biri etkin iken g_{mi} ifadesinin her durumda sabit değerli olabilmesi için etkin olan çiftin kuyruk akımının arttırılması gerekmektedir. g_{mN,P} değerlerinin kuyruk akımının kareköküyle orantılı olmasından dolayı, etkin olan çiftin çalışmayan çiftin de katkısını sağlayacak şekilde kuyruk akımının, toplam g_{mi} değerini sabit tutabilmesi için, bu durumda dört kat artması gerekeceği açıktır [9]. Bunu gerçekleştirebilecek bir yapı için de M5, M6, M11, M12 ve M25 tranzistorları N-kanallı giriş çifti için, M9, M10, M15, M16 ve M26 tranzistorları da P-kanallı tranzistor çifti için kullanılmaktadır. M11-M12 ve M9-M10 tranzistorları arasındaki akım aynalama oranı 1:3 olacak çekilde tasarım gerçekleştirilmiştir. M17-M24 tranzistorları ise işlemsel olarak akım toplama görevini yerine getirmektedir.

Şekil 3'de giriş g_{mi} ifadesinin ortak işaret giriş gerilimine bağlı olarak giriş katındaki değişimi benzetim sonucu olarak verilmiştir. Tablo 1'de de giriş katında kullanılan tranzistorlara ilişkin boyutlar verilmiştir. Görülebildiği gibi giriş g_{mi} değeri ortak işaret giriş geriliminin özel olarak ±0.75V değerleri civarında en fazla yaklaşık +%25 değişime uğramaktadır.

Yapıda görülen ortak savak çıkışlı M31 ve M32 tranzistorları ile M20 ve M22 tranzistorlarının yüksek empedanslı ortak savak uçlarındaki gerilim kullanılarak yüksek değerli akım kazancı elde edilmektedir.

Tablo 1: Giriş katı tranzistor boyutları

Tranzistor Adı	Kanal Genişliği [um]	Kanal Boyu [um]
M1, M4, M5-M8, M10, M12, M21- M24, M32	45	0.7
M2,M3, M31	120	0.7
M17-M20	100	0.7
M11, M13-M16	15	0.7
M9	135	0.7
M25, M26	50	0.7
M27	100	1.4
M28	150	1.4
M29	30	1.4
M30	45	1.4

2.2. CMOS FTFN Çıkış Katı

FTFN elemanında Z ve W çıkış uçları yüksek empedanslı olarak $I_Z=I_W$ akım ilişkisini gerçekleştirecek şekilde tasarlanmıştır. Çıkış katlarında aktif geri-beslemeli kaskod akım aynaları kullanılmıştır [10]. Düzenlenen yapı Şekil 4'te gösterilmiştir. Çıkış katında kullanılan tranzistorlara ilişkin boyutlar da gene Tablo 2'de verilmiştir.

Tablo 2: Çıkış katı tranzistor boyutları.

Tranzistor Adı	Kanal Genişliği [µm]	Kanal Boyu [µm]
Tüm N-kanallı Tranzistorlar	45	0.7
Tüm P-kanallı Tranzistorlar	15	0.7

Şekil 4: Önerilen FTFN için çıkış katı.

SPICE Benzetimi gerçekleştirilen yapıda Z ve W ucu çıkış empedanslarının 1.2 G Ω civarında olduğu görülmektedir. İlgili durumu gösteren Z-ucu için Çıkış empedansı - Frekans karakteristiği Şekil 5'te verilmiştir.

2.3. Önerilen FTFN için Başarım

Önerilen beslemeden beslemeye giriş katlı FTFN iç yapısına ilişkin başarımı incelemek için SPICE benzetim ortamından yararlanılmıştır. İç yapıda bulunun tüm tranzistorlar için AMS 0.35µm BSIM 3v3 model parametreleri kullanılmıştır. Bir FTFN elmanının en önemli başarım özelliği olan toplam geçiş iletkenliği değeri – g_{mT} önerilen yapıda 370mA/V değerinde elde edilebilmiştir. Şekil 6'da da görülebileceği gibi g_{mT} için 3dB kesim frekansı da yaklaşık olarak 1.8MHz olmaktadır. Tablo 3'de FTFN elemanına ilişkin başarım değerleri özetlenmiştir.

<i>Tablo 3</i> : Onerilen	FTFN	yapısı	için	başarım.

	1 3 9		
Başarım Özelliği	Benzetim Sonucu		
Besleme Gerilimi	±1.5V		
Giriş katı geçiş iletkenliği, g _{mi}	2.015 mA/V		
	$(\Delta g_{mi} = +0.55 \text{ mA/V})$		
Kutuplama Gerilimleri	$V_{b1}=0.4V V_{b2}=-0.5V$		
Kutuplama Akımları	$I_B=100\mu A$		
Giriş Ofset Gerilimi	1.14mV		
Güç Tüketimi	4.44mW		
Toplam geçiş iletkenliği, g_{mT}	370 mA/V		
Kesim frekansı	1.8 MHz		
Çıkış akımı salınım aralığı	±1.25mA		
Çıkış Empedansları (Z, W)	1.2GΩ		

Şekil 5: Z-ucu çıkış empedansı

Şekil 6: Toplam geçiş iletkenliği, g_{mT} – Frekans ilişkisi.

3. FTFN Uygulaması

Önerilen iç yapının bir uygulamasını gerçekleştirebilmek amacıyla iki adet FTFN elemanı kullanılarak oluşturulabilen yeni bir topraklanmış endüktans benzetimi önerilmiştir [12].

Şekil 7'de gösterilen ilgili yapıda devre analizi yapılarak aşağıda verilen empedans ve endüktans ifadelerinin elde edilebileceği gösterilebilir.

$$Z(s) = \frac{v}{i} = sL_{eq} = s\frac{R_1R_2R_4}{R_2}C$$
 (4)

$$L_{eq} = \frac{R_1 R_2 R_4}{R} C \tag{5}$$

Şekil 7: Önerilen topraklanmış endüktans yapısı.

Topraklanmış endüktans benzetimini kullanabilmek amacıyla maksimum düz bandlı üçüncü dereceden yüksek geçiren bir süzgeç yapısı 50 Ω giriş-çıkış direnci verecek şekilde pasif LC elemanlarıyla Şekil 8'de verildiği gibi oluşturulmuştur. Süzgeç için 1MHz kesim frekansı seçildiğinde ilgili pasif elemanla değerleri ANSOFT Süzgeç tasarım yazılımı kullanılarak C₁=C₂=C=3.18nF, L=3.98µH ve R_S=R_{Load}=R=50 Ω olacak şekilde belirlenebilir. Süzgece ilişkin transfer fonksiyonu da ,

$$\frac{v_0}{v_i}(s) = \frac{RLC^2 s^3}{2RLC^2 s^3 + (R^2 C^2 + 2LC)s^2 + 2RCs + 1}$$
(6)

denklemiyle pasif elemanlar cinsinden elde edilebilir.

Şekil 8: 3. dereceden yüksek geçiren süzgeç yapısı.

Önerilen topraklanmış endüktans yapısının kullanılmasıyla yukarıda verilen süzgeç yapısında pasif endüktansın yerine FTFN gerçeklemesinde; $R_1=R_2=1k\Omega$, $R_4=10k\Omega$, $R_3=100k\Omega$ ve C=39.7pF olacaktır.

Benzetimi yapılan süzgece ilişkin frekans karakteristiği Şekil 9'da ideal durumla beraber gösterilmiştir.

Şekil 9: Süzgece ilişkin frekans cevabı. Noktalı karakteristik ideal durum cevabını vermektedir.

Görüldüğü gibi süzgeç yanıtı ideal durumla oldukça benzer bir davranış göstermektedir. Devrenin büyük işaret yanıtının incelenmesi amacıyla da süzgeç girişinde 1.5V tepeden tepeye besleme aralığını içerecek şekilde giriş sinüsoidal işareti uygulanmış ve toplam harmonik distorsiyon (THD) incelemesi yapılmıştır. Devrenin verilen değerde çıkışta %1.75 gibi bir THD'ye sahip olduğu görülmüştür.

4. Sonuç

Bu çalışmada literatürde bulunan çeşitli FTFN yapılarına alternatif olabilecek şekilde tümleştirmeye uygun yeni bir beslemeden beslemeye giriş katlı CMOS FTFN yapısı sunulmuştur. Önerilen içyapıya ilişkin başarım özellikleri SPICE benzetim ortamında gösterilmiştir. Yapının uygulama başarımının sınanması için de gene topraklanmış endüktans elemanının yeni bir FTFN gerçeklemesi sunularak, yapının önerilen iç yapıyla birlikte başarımı gösterilmiştir. Tüm benzetim sonuçlarından yola çıkarak önerilen iç yapının ilgili uygulamalarda kullanım alanı bulabileceğini kolaylıkla söyleyebilmekteyiz.

5. Kaynakça

- J. H. Huijsing, "Operational floating amplifier (OFA)." In IEE Proc. 137(2), part G, pp. 131–136, 1990.
- [2] W. S. Director and R. A. Rohrer, "Automated Network Design- The Frequency Domain Case", IEEE Trans. on Circuit Theory, CT-16, no 3, pp. 330-337. August, 1969.
- [3] G. W. Roberts, A. S. Sedra, "A General Class of Current Amplifier-Based Biquadratic Filter Circuits" IEEE Transaction on Circuit and Systems-I: Fundamental Theory and Applications, 39, 257-263, 1992.
- [4] W. Tangsrirat, S. Unhavanich, T. Dumawipata and W. Surakampontorn, "A realization of current-mode biquadratic filters using multiple-output FTFNs," Proceeding of IEEE APCCAS2000, pages 201-204, 2000.
- [5] U. Çam, H.Kuntman, CMOS four terminal floating nullor (FTFN) design using a simple approach, Microelectronics Journal, Vol.30, No. 12, pp.1187-1194, 1999.
- [6] U. Çam and H. Kuntman, "A new CMOS realisation of four terminal floating nullor (FTFN)", International Journal of Electronics, Vol. 87, No.7, pp 809-817, 2000.
- [7] A. Jiraseree-Amornkun and W. Surakampontorn, "Constant-g_m Rail-to –Rail CMOS Multi-Output FTFN" The 2002 International Technical Conference On Circuits/Systems, Computers and Communications, Phuket, Thailand, pp.333-336, July 2002.
- [8] M. Sayginer, H. Kuntman, "Yüksek geçiş iletkenli yeni bir CMOS FTFN gerçeklemesi", ELECO'06, Proc. of Nat.. Conference on Electrical and Electronics Eng., Electronics:, pp.50-55, Bursa, 2006.
- [9] R. Hogervorst, R.J. Wiegerink, P.A. de Jong, J. Fonderie, R.F. Wassenaar, and J.H. Huijsing, "CMOS low-voltage operational amplifiers with constant-g_m rail-to-rail input stage" Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 2876-2879, 1992.
- [10] A. Zeki and H. Kuntman: Accurate active-feedback CMOS cascode current mirror with improved output swing, International Journal of Electronics, Vol.84, No.4, pp.335-343, 1998.
- [11] M. Saygıner, H. Kuntman, "Realization of First-Order All-Pass Filter Using Four Terminal Floating Nullor", Proceedings of Applied Electronics 2006,pp. 159-161, Pilsen, Czech Republic, 6-7 September 2006.
- [12] M. Saygıner, "Yeni FTFN yapıları ve uygulamaları", Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007