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Abstract 
  

The paper deals with the computer aided analysis of weakly 
coupled Josephson junctions submitted or not to applied 
magnetic fields. A comparative study was made between the 
analytical solutions provided by specialty literature for 
currents phase variations and those obtained after original 
simulation. As remarkable differences were revealed, some 
original formulas were deduced, validated through 
programs that operate symbolical (written in 
MATHEMATICA) and error computations were done. The 
original formulas provide better approximation of solutions, 
the approximation errors being significantly reduced. 

  
1. Introduction 

  
The most interesting applications of superconductor 

electronic devices are: SQUID magnetometers, test instruments 
using SQUID (e.g. susceptometers), standard Volt, mixers for 
millimeter and submillimeter wavelengths, detectors of various 
type of waves (e.g. X rays) [4],[9].  

The equations describing motion equations in Josephson 
junctions cannot be solved by ordinary mathematic methods. 
They are implicit equations, nonlinear and including derivatives.  
Yet some efforts were made to provide analytical solutions, 
based on adiabatic solutions. These solutions introduce errors. 

  
2. Fundamentals on Weak Coupled Josephson 

    junctions 
  

The method presented in this paper was conceived for  the 
investigation of three SQUID cells, depicted by fig. 1, but the 
basic principles can be applied in a wider range [1]. 

The common elements in all three cases are: the supplying 
current 2I0, the loop effective inductance  L and the parallel 
biasing schematic.  

The following system is obtained for identical junctions, 
within the frame of a RSJ model, developing the motion 
equations from Eq.1: 
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φ1 and φ2  denote the Josephson phases,  
cI

Ii 0
0 = represents the 

normalized biasing current (assumed as greater than 1), l 

 
Fig. 1. SQUID cells 

  

represents the normalized loop inductance, 
0
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πφϕ =  represents the external normalized flow. 

The derivation was made with respect to the scaled time: 
 
   tRIes Nc⋅= �/2            (2) 

 
For a weak coupling (l>>1), the coupling can be neglected 

up to a zero order with respect to l-1 and both junctions oscillate 
with the Josephson phase of an overcritical free biased contact. 
In [2] the following analytical formula was proposed : 
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where δ1 and δ2  are constant phases and .12
00 −= iζ  

 
3. Numerical Solution in the Absence of an Applied 

Magnetic Flow 
 

An original MATLAB program was conceived, in order to  
solve the differential equations system (1). The corresponding 
block diagram is depicted by fig. 2.   

If  the junction applied magnetic flow is assumed to be 0, the 
initial conditions used for integration are identical and the value 
for the block named "flux" is zero. 

A 5-th order Runge-Kutta method was used, with a minimum 
step of 10-4 and a tolerance of 10-5. The numerical values of 
parameters are 5.10 =i (widely used in practice) and 

001.01 =−l (weak coupling). The curve representing the 
numerical solution of φ1 required a preliminary Spline 
interpolation, because the values used for its construction were 
provided by the bloc Phi1 , at different time steps, as yielded by 
the internal calculation process. 
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For comparison, fig. 3 depicts two curves: the curve 

represented by full line relies on numerical data and the 
other one represents the analytical solution , as described 
by (3).  

The periods of the represented curves are obviously 
different. To determine the variation of the numerical 
curve period, the program was employed for various 
values of  i0 (in the range 1.3  - 1.6) and the results were 
interpolated in the least squares sense. 

The following original formula was deduced for the 
period:   

 

 
Fig. 3. Numerical and analytical solutions 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

( ) 2.10074.16312.9445.18 0
2

0
3

00 +⋅−⋅+⋅−= iiiipernum    (4)  
Based on the above expression, we can now use a new 

formula, as follows: 
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Fig. 4 depicts the difference between the analytical solution 
(3) and the curve (5). 

To reduce this difference, one must introduce a correction 
factor, of  sine shape. Its amplitude is deduced after an 
interpolation in the least squares sense of the data generated for 
various values of  i0 (in the range 1.3  - 1.6), as follows: 

 

 
 

Fig. 4. Difference after the first correction 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. MATLAB block diagram used for low coupling Josephson junctions simulation 

 

Fig. 2. MATLAB block diagram used to simulate a SQUID with low coupling 
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Fig. 5.Comparative study of errors 
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The numerical formula after the second correction is: 
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where pernum and amp are calculated with the interpolation 
polynoms presented above.  

In order to validate the results and to compare the errors 
introduced by the analytical formula and respectively by the 
original numerical formula, a MATHEMATICA program was 
conceived.   

Figure 5 depicts the deviation from  0  of the equation (1.a) 
using both formulas, for the most usual case (i0=1.5). 

An analysis of the curves from fig. 5 emphasizes that the 
deviation introduced by the original formula presented in this 
paper presents a maximum absolute value of 0.12 and its values 
alternate around 0, having a mean value of almost 0, whereas the 
deviation of  the analytical formula has a double absolute value 
(0.25), only negative values and consequently a negative mean 
value.  

One can conclude that the numerical solution provides a 
better solution. 
 

4. Numerical Solution in the Presence of an Applied 
Magnetic Flow 

 
When the magnetic flow applied on the cell is nonzero, it 

influences the variation curves periods. Moreover, in this case 
the relative inductivity of the cell has an influence that cannot be 
neglected, the right term becomes non trivial.  

In order to consider the influence of the above factors, the 
MATLAB program (fig. 2) was used to generate different sets of 
data, corresponding to different values of the relative 
inductivities and of applied magnetic flow , for a current i0=1.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 1. Periods calculated for different inductances and  
applied magnetic fields 

 
 

l-1 Calculated period 
ϕ=0 ϕ=1 ϕ=2 ϕ=3 

0.01 4.12 4.17 4.23 4.31 
0.1 4.12 4.8 5.93 7.6 
0.15 4.12 5.22 7.75 9.2 

  
Based on this data, the second order interpolation 

polynomials (in the least square sense) were deduced for each 
curve, considering l-1 as constant. Three interpolation 
polynomials were obtained. Then each set of polynomial 
coefficients was interpolated with respect to l-1. As a 
consequence, the supplementary term calculation introduced by 
the presence of a magnetic flow has the formula: 
 

( ) ( ) ( ) ( )lcoeflcoeflcoefllper 32
2

1,sup_ +⋅+⋅= ϕϕϕ   (8) 
 
where: 
 
  ( ) 0286.0/15845.2/17381.47 2

1 +⋅−⋅= lllcoef           (9) 
 

   ( ) 035.0/18842.7/189.33 2
2 −⋅+⋅−= lllcoef           (10) 

 
    ( ) 0009.0/11501.0/19603.0 2

3 −⋅+⋅−= lllcoef      (11) 
 

Consequently the following formula is proposed: 
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where the initial phases are constant and their difference equals 
the applied magnetic field (δ1 - δ2 ≈ ϕ).  

Using a MATHEMATICA program, a comparative study of 
errors was performed (fig. 6) . This specialized software is used 
because it provides symbolic calculations.  
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Fig. 6. Errors study for a nonzero applied magnetic field 

The curves represent the deviation from 0 of  (1.a)  for l-1=0.1 
and ϕ=2.5. One can notice an obvious decrease of the absolute 
error, from 2 (analytical curve) to 0.2 (numerical curve). 
 

5. Conclusions 
 

The system of motion equations describing SQUID cells 
behavior in the weak coupling case consists of implicit 
equations, nonlinear and including derivatives. Present 
mathematic methods do not provide analytical solutions for this 
system.  

Using the adiabatic method, an analytical solution was 
deduced and proposed in the specialty literature. A comparison 
with a numerical solution reveals significant differences.  

After repeated simulations and interpolations performed on 
different sets of input parameters, original hybrid solutions were 
deduced.  

The errors calculation proves the superiority of the original 
formulas.  
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