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Abstract 
In this paper, we have developed an original full-wave 
theoretical model for the high frequency characterization 
of the micro-strip step discontinuity on an infinite 
dielectric substrate. The exact Green’s function of 
grounded slab is used in tow-dimensional Galerkin 
method procedure in the spectral domain; so surface 
waves as well as space-wave radiation are included. The 
results Obtained have been compared with other results 
witch are obtained with other techniques. 
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1. INTRODUCTION 
Micro-strip discontinuities are very important part for 
characterization of micro-strip line basic constituent 
elements of [1-6]. The characterization of these 
discontinuities obtained by the quasi-static method [7], or 
by the method based on the equivalent wave-guide model. 
The first method only gives approached solutions for 
parameters of discontinuity in bases frequencies. The 
second approach gives a lot of information on the 
dispersion and its effects at high frequencies, but it does 
not take into account the losses due to radiation and to 
excitation of surface waves in the discontinuity. It is 
therefore of limited utilization. Then, the characterization 
of micro-strip line and its discontinuities require an 
accurate theoretical full-wave model accounting for 
electromagnetic coupling, space and surface waves 
excitation [1-18]. 
In this paper, we have developed a theoretical model to 
characterize the micro-strip step discontinuity on lessloss 
substrate, and carefully studies effects of the surface and 
space waves on circuit performances. In this model, we have 
applied our exact dyadic Green’s function for of a grounded 
dielectric slab [1,2]. New integral equations for the electrical 
components near discontinuity are formulated, in spectral 
domain, using the developed exact dyadic Green’s function 
[1-3]. Such a rigorous analysis is very often based on an 
integral equation formulation, typically solved with the 
method moments. In this paper, we apply our new algorithm 
of the tow-dimensional Galerkin’s technique to the integral 
equations formulation for that type of discontinuity. 
2. THEORETICAL BACKGROUND 
Consider the discontinuities of micro-strip shown in fig.1. 
The substrate extends to infinity in x- and y-directions. The 
thickness of the metallization is assumed to be negligible in 

comparison with thickness of the substrate. Then, the surface 
current is assumed to flow only in the x- and y- directions in 
the strip [1-6]. 
Using the Maxwell’s formulation and applying the tow-
dimensional dyadic Green’s function of the microstrip 
given in [1], yield the electrical field element integral 
equation expressed by [2,5]: 
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Fig. 1. Micro-strip line Step discontinuity.  
We can extract the micro-strip characteristics by resolving the 
matrix equation, which has been developed in [1], using the 
least square procedure. 
The integral equation of the step discontinuity (fig. 1.a) is 
written by imposing a boundary condition such as the 
total electrical field due to all the currents on the line, is 
null [1-9]. Equation (1) leads to: 
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where  gn(η) is given in [1]. Ii, Ir and It are the incident, the 
reflective and the transmitted current components given by: 
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To analyze this discontinuity, three dominant modes are 
used in the representation of the incident, reflective and 
transmitted currents. The transmitted current It is 
introduced in the equation (3) with N additional PWS 
modes. These modes have to exist in xn = -nd for n = 1, 2, 
..., N and in xn=nd for n=N+1, N+2,..., 2N. It results 
therefore 2N PWS modes, which are used in the new 
integral equation. 
To resolve the characteristic equation (3), we enforce it by 
the multiplication by 2N+2 weighting or test functions: 
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where Fx, Fy, Fmn, Fmc, Fms, Fmct and Fmst are defined in 
[4,9]. R and T are the reflection and the transmission 
coefficients given by [4,9]. The substitution of the double 
summation in the resulting integral equation, allows us to 
define the impedance matrix by: 
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where the impedance matrix elements Zmn, Zms, Zmc, Zmst, 
Zmct are defined in [4]. 

Using the lower upper decomposition technique for 
inverting the resulting impedance matrix, we can resolve 
the matrix equation (8). This expression allows to obtain 
the reflection coefficient R, the transmission coefficient T 
and the In coefficients. 
3. RESULTS 
The fig. 2 gives amplitude of reflection coefficient of a 
microstrip Step discontinuity, versus frequency, for 
substrate of εr =10 and W1=h=0.625mm with W2=3W1 (a) 
and W2=5W1 (b). Our results are compared with those of 
Koster [19,22] and those gotten by the qausi-static 
approach [20]. Our results as shown in fig. 4 are in good 
agreement with those of Koster [19,22] and with those of 
the qausi-static approach [20]. 

The fig.  3. a. and fig. 3. b. gives magnitude of 
transmission and reflexion coefficients respectively of a 
micro-strip Step discontinuity, versus frequency substrate 
of εr =10 and W1=h=0.625mm with W2=3W1 and 
W2=5W1 Our results are compared with those of Koster 
[19,22] and those gotten by the qausi-static approach [20]. 
Our results are in good agreement with those of Koster 
[19,22] and with those of the qausi-static approach [20]. 
And our results are sometimes in perfect concordance 
with other method’s results. 
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Fig. 2. Frequency dependent magnitude reflexion 
coefficients of micro-strip Step discontinuity. 

 

 

 

 

 

 

 

 

Fig. 3. Frequency dependent magnitude transmission 
coefficients of micro-strip Step discontinuity. 
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Fig. 4. Frequency dependent argument transmission 

coefficients of micro-strip Step discontinuity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Frequency dependent argument reflexion 

coefficients of micro-strip Step discontinuity. 

The fig.  4.  gives magnitude of transmission and reflexion 
coefficients of a micro-strip Step discontinuity, versus 
frequency substrate of εr =10 and W1=h=0.625mm with 
W2=3W1 and W2=5W1 Our results are compared with those 
of Koster [19,22] and those gotten by the qausi-static 
approach [20]. Our results are in good concordance  with 
those of Koster [19,22] and with those of the qausi-static 
approach [20]. 
The fig.  5.  gives argument of transmission coefficient of a 
micro-strip Step discontinuity, versus frequency substrate 
of εr =10 and W1=h=0.625mm with W2=3W1 and W2=5W1 
Our results are compared with those of Koster [19,22] and 
those gotten by the qausi-static approach [20]. Our results 
are in good concordance  with those of Koster [19,22] and 
with those of the qausi-static approach [20]. 
The fig.  6.  gives argument of reflexion coefficient of a 
micro-strip Step discontinuity, versus frequency substrate 
of εr =10 and W1=h=0.625mm with W2=3W1 and W2=5W1 
Our results are compared with those of Koster [19,22] and 

those gotten by the qausi-static approach [20]. Our results 
are in good concordance  with those of Koster [19,22] and 
with those of the qausi-static approach [20]. 
4. CONCLUSION 
An analysis by the full wave approach using a two 
dimensional Galerkin’s method has been used for typical 
step discontinuities in the microstrip line. The magnitudes 
of the scattering parameters are calculated versus frequency 
and compared with previous calculations. The importance 
of ameliorations is also addressed. The accuracy of our 
results has been checked with an excellent agreement with 
the different approaches. This analysis can help in the 
design of microwave integrated circuits, particularly for the 
high frequencies and the planar structures. Such analysis 
should aid to characterize more complicated discontinuities 
in the microstrip line. 
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