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Abstract
A new, simple method
characteristic impedance

calculating the
conductor-backed

coplanar waveguide, based on artificial neural
networks, is presented. Three leaming algorithms, the
backpropagation, the delta-bar-delta, and the
extended-delta-bar-delta, are used to train the
networks. The method can be used for a wide range of
substrate thicknesses and permittivities, and is useful
for the computer-aided desigr (CAD) of coplanar
waveguides. The calculated characteristic impedance
results are in very good agreement with the results
available in the literature.

I. INTRODUCTION

Coplanar structures have received a lot of theoretical
and experimental interest recently Il-3] because they
have several advantages over conventional microstrips
for use in monolithic or hybrid integrated circuit
applications at microwave frequencies, including easy
parallel and series insertion ofboth active and passive
components and high circuit density. Several rigorous
methods [l-3] are available to determine accurately
the characteristic impedance of conductor-backed
coplanar waveguide (CPW), as this is one of the most
popular coplanar stnrctures. Exact mathematical
formulations in rigorous methods involve extensive
numerical procedures, resulting in round-off enors,
and may also need final experimental adjustments to
the theoretical results. They are also time consuming
and not easily included in a CAD system. For these
reasons, in this work a new simple method based on
artificial neural networks (ANNs) for calculating the
characteristic impedance of conductor-backed CPW
has been presented. Conductor backing of the
substrate improves both the mechanical strenglh and
the power-handling capability [14]. Ability and
adaptability to learn, generalizability, smaller
information requirement, fast real-time operation, and
ease of implementation features have made artificial
neural networks popular in the last few years [5-19].
Because of these fascinating features, artificial neural

networks in this article are used to calculate the

characteristic impedance of conductor-backed CPW.
In previous works [12-19], we also successfully

introduced the artificial neural networks to model a
robot sensor, and to compute the various parameters of
the triangular, rectangular and circular microstrip
antennas. In the most of these works, only the
backpropagation algorithm was used to train the neural
model. However, in this study three learning
algorithms, the backpropagation (BP), the delta-bar-
delta (DBD), and the extended-delta-bar-delta
(EDBD), are used to train the networks. The reason for
using three different learning algorithms is to speed up
the fiaining time and to improve the performance of
neural models.

In the following sections, the coplanar waveguides,
the artificial neural networks, and the application of
the networks to the calculation of the characteristic
impedance of conductor-backed CPW are explained.

II. COPLANAR WAVEGUIDES

The CPW proposed by Wen [20] consists of two slots
each of width W printed on a dielectric substrate, as
shown in Fig. l(a). The thickness and relative
dielectric constant of the substrate are denoted by h
and e,, respectively. The spacing between the slots is
S. The conventional CPW presented by Wen [20] can
not be used as such because of the requirement of
infinitely thick substrate. For practical applications
substrate thickness has to be finite as in Fig. l(b). It
also very tempting to introduce a conductor backing to
improve the mechanical strength of the transmission
line so that thin substrates can be used. The certain
way of computing the characteristic impedance of
conductor-backed CPW with finite dielectric thickness
involves the quasi-static and fullwave analyses [l-3].
Wen [20] presented a quasi-static analysis of the
coplanar lines using conformal mapping, with the
assumption that the dielectric substrate is thick enough
to be considered infinite. Conformal fiansformation
has also been applied to take into account the effects
of the finite thickness of the dielectric substrate, finite
size of the ground planes, upper shield, ground plane
below the substrate as in microstrip line, stnrctural
asymmetry, and multilayer configuration. A fullwave
analysis of coplanar lines, which provides information
regarding frequency dependence ofphase velocity and

224

for
of



"ELECO'99 INTERNATTONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

characteristic impedance, has been carried out by a
number of authors [-3]. The techniques employed
include Galerkin's method in the spectral domain,
variational methods, integral equation, relaxation
method, method of lines, mode-matching technique,
and finite-difference time-domain technique Il-3].
These methods require high performance large-scale
computer resources and a very large number of
computations.

(a)

l+- 2b -l
--l za |.-

- - T .

, t , ' , .  . , - - - - - ;Lh

(b)

Fig.l Geometry of(a) CPW and (b) conductor-backed
cPw.

It is clear from all ofthe methods Il-3] proposed in
the literature that only four parameters, e,, h, a, and b,
are needed to describe the characteristic impedance of
conductor-backed CPW. In this work, the
characteristic impedance is calculated by using a new
model based on artificial neural networks. Only four
parameters, e,, h, a, and b, are used in calculating the
characteristic impedance.

III. ARTIFICIALNEURAL NETWORKS

Artificial neural networks have many structures and
architectures [5-8]. Multilayered perceptrons (MLPs)
[5-8] are the simplest and therefore most comrnonly
used neural network architectures. They have been
adapted for the calculation of the characteristic
impedance of conductor-backed CPW. MLPs can be
trained using many different learning algorithms [5-
lll. In this work, MLPs are trained with the three
supervised learning algorithms, the BP, the DBD, and
the EDBD [5, 7-10]. Ai shown in Figure 2, an MLP
consists ofthree layers: an input layer, an output layer
and an intermediate or hidden layer. Processing
elements (PEs) or neurons (indicated in Figure 2 with
the circle) in the input layer only act as buffers for
distributing the input sigrals x; to PEs in the hidden

layer. Each PE j in the hidden layer sums up its input
signals x1 after weighting them with the strengths of
the respective connections w1; from the input layer and
computes its output yi as a flinction/of the sum, viz.

-_sr
t i  =  l ( / w  1 t x )  ( l )

/ can be a simple threshold function, a sigmoidal or
hyperbolic tangenr function. The output of pEs in the
output layer is computed similarly.

Fig.2 General form of backpropagation multilayered
perceptron.

Training a network consists of adjusting weights of
the network using the different learning algorithms
[5,7-ll]. A learning algorithm gives the change
Aw;;(k) in the weight of a connection between pEs i
and j. In the following section, three learning
algorithms used in this study have been explained
briefly.

Backpropagation Algorithm
The algorithm [5] is the most commonly adopted MLp
training algorithm. It is a gradient descent algorithm
and gives the change Awi;ft) in the weight of a
connection between PEs i aridj as follows

Aw l iG )= r t6 j x ;+oAw l iG - l )  ( 2 )

where 4 is a parameter called the learning coefficient,
q is the momentum coefficient, and d'; is a factor
depending on whether PEI is an output p! or a hidden
PE.

Delta-Bar-Delta Algorithm
The DBD algorithm is a heuristic approach to improve
the speed ofconvergence ofthe connection weights in
MLPs [8,9]. The connection weight is updated by

w(k+l)=w(k)+c(k)6(k)  (3)

where a(k) is leaming coefficient and assigned to each
connection, qU is the gradient component of the
weight change. 6(k) is employed to implement the
heuristic for incrementing and decrementing the
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learning coefficients for each connection [9]. The

weighted average {t/ is formed as

aG)=(t-a)6(k)+6(k- l)  (4)

where d is the convex weighting factor. The

connection learning coefticient change is given as

[ * '  5( t - t )aG)>o
Aa(k)= 1-po(k), 5G-t)a0<)<o (5)

|.0, 
otherwise

where r is the constant learning coeflicient increment

factor, and g is the constanl learning coeflicient

decrement factor.

Extended Delta-Bar'Delta Algorithm

This algorithm [8,10] is an extension of the DBD and

based on decreasing the training time for multilayered

perceptrons. tn this algorithm, the changes in weights

are calculated as

Aw(k + l) = a(k)6(k)+P(k)Aw(k) (6)

and the weighir 4re then found as

w ( k + l ) = n ( [ ) + A w ( k + l )  ( 7 )

fn eq,(6), q(*) and /k) are the learning and

momentum coefificients, respectively.

The learning goefticient change is given as

whete Ko ig ttc constant leaming coefficient scale

frctq, *p is the exponential function, <po is the

consaant leaming coeffrcient decrement factor, and yo

is tltp constant learning coefficient exponential factor'

The momentum coefficient change is also written as

where r* is the constant momenhlrn coeflicient scale

factor, gu is the constant momentum coefficient

decrement factor, and 1* is the constant momenhlm

coeffi cient exponential factor.
As can be seen from eqns.(8)-(9), the learning and

the momentum coefftcients have separate constants

controlling their increase and decrease. {ft/ is used

whether an increase or decrease is appropriate' The

a justment for decrease is identical in form to that for

the DBD explained above. Therefore, the increases in
the both coefficients were modified to be
exponentially decreasing functions of the magnitude of

the weighted gradient components l6(kN . Thus, greater

increases will be applied in areas of small slope or
curvature than in areas of high curvature. This is a
partial solution to the jump problem. In order to take a
step further to prevent wild jumps and oscillations in
the weight space, ceilings are placed on the individual
connection leaming and momentum coefficients. For
this,

cr(k) < otnr*
p(k) < p.* (10)

must be for all connections, where e.* is the upper
bound on the leaming coefficient, and 5"* is the
upper bound on the momentum coefficient.

Finally, after each epoch presentation of training
tuples, the accumulated error is evaluated [8]. If the
enor E(k) is less than the previous minimum error, the
weights are saved as the current best. A recovery
tolerance parameter ?r' controls this phase. Specifically'
if the current error exceeds the minimum previous
error such that

E(k) > E^,,,1 (l l)

All connection weights revert to the stored best set of
weights in memory. Further, the both coefficients are
decreased to begin the recovcry.

IV. APPLICATION OF ARTIFICIAL NEURAL
NETWORKS TO THE CALCULATION OF THE
CHARACTERISTIC IMPEDANCE

The proposed method involves training MLPs to
calculate the characteristic impedance of conductor-
backed CPW when the values of e,, h, a, and b, are
given. Figure 3 shows the neural model used in neural
computation of the characteristic impedancc' At
explained before the three leaming algorithms, th! BP'
DBD. and the EDBD, are used to train MLPs. In the
three MLPs, the input and ouput layers have the linear
transfer function and the hidden layer has the tang€nt
hyperbolic function. Training the MLPs by three
learning algorithms to compute the characteristic
impedance involves presenting them sequentially with

different (e. h, a, b) sets 4nd conesponding target
values. Differences between"the target output and the
actual output ofthe MLPS are trained through the three
learning algorithms to adapt their weights. Thc
adaptation is carried out after the presentation of each
set (e' h, a, b) until the calculation accuracy of the
network is deemed satisfactory according to the root-
mean-square (rms) enor between the target ouput and
the actual output for all the training sets that fall below
0.01 or the maximum allowable number of epochs is
reached to 150,000.

The training and test data sets used in this paper
have been obtained from the previous works [l'4]. A
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set of random values disfiibuted uniformly between
-0.1 and +0.1 was used to initialize the weights of the
three networks. However, the input data tuptes were
scaled between -1.0 and +1.0 and the output data
tuples were also scaled between -{.8 and +0.8 before
training. The most suitable network configuration
found was l0 PEs for the hidden layer. Both sequential
and random procedures were used in training.

The parameters of the network are: lor Bp, the
leaming coeflicients were set to 0.3 for hidden taver
and 0.15 for the output layer, and the rornantut
coeffrcient was also set to 0.3; for DBD, r=0.01,
e<).5, e<).7, a,=0.2, the momentum coefticient was
fixed to 0.4; for EDBD, rc.=9.995, xu=0.01, Tr.=0.0,
y"=0.0, gu=0.0 1, go:0. l, 0:0.7, l,=|.5.

Characteristic impedance (ft)
60

Fig.3 Neural model for characteristic impedance
calculation.

V. RESULTS AND CONCLUSIONS

In order to demonstrate the computational effort of the
neural models, the test results of ANNs for e.= I 3 with
different values ofh, a, and b which are not used in the
training process are compared with the results of well-
known reliable method [2] in Fig.a. The test results

Characteristic impedance (Cl)
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Fig.4 Characteristic impedance results of conductor-
backed CPW (e.=t3) for (a) EDBD, (b) DBD and (c)
BP learning algorithms.

illustrate that the performance of the proposed method
is quite robust and precise. As can bcseen from Fig.4,
there is an excellent agreement with the data fiom-the
method [2]. This excellent agreement supports the
validity of the ANNs.

NEURAL MODEL

FOR

CHARACTERISTIC

IMPEDANCE
Characteristic impedance (e)
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For three different leaming algorithms, the number

of iteration when the rrns enor is set to 0.01 is given in

Table I. When the performances of three neural

models are compared with each other, the best result
was obtained from the EDBD. Among the neural
models, the worst performance was obtained from the
BP.

Table I. The number of iteration when the rms error is

set to 0.01

Leaming
algorithms used in

tranlnq

The number of
iteration

EBDB 86.426
DBD I 18.384
BP r27.428

Since the ANNs presented in this work have high
accuracy and require no complicated mathematical
functions, they can be very useful for the development
of fast CAD algorithms. The advantages of the ANNs
given here are simplicity and accuracy' The proposed
ANNs do not require the complicated Green's function
methods and integral transformation techniques. The
ANNs only require four parameters: e,, h, a, and b' For
engineering applications, the simple models are very
usable. Thus the ANNs trained by three leaming
algorithms can also be used for many engineering
applications and purposes.

VI. REFERENCES

tll T. Itoh, Numerical Techniques for Microwave
and Mil limeter-wave P assive Structures, W iley,
New York. 1989

I2l R. Goyal (Ed.), Monoliihic Microwave
Integrated Circuits: Technologt and Design,
Norwood, MA:Artech House, 1989.

t3l K.C.Gupta, R. Garg, I. Bahl and P. Bhartia'
Microstrip Lines and Slotlines, Artech House,
Boston, 1996.

t4l G. Ghione and C. Naldi, "Parameters of coplanar
waveguides with lower ground plane," Electron.
Lett., vol. 19, pp. 134-735, 1983.

t5l D. E. Rumelhart and J. L. McClelland, Parallel
Distributed Processing, vol. l, Cambridge, MA:
MIT Press, 1986.

t6] A. Maren, C. Harston, and R' Pap, Handbook of
Neural Computing Applications, London:
Academic Press, ISBN 0-12-471260'6, 1990'

[7] S. Haykin, Neural Network: A Comprehensive
Foundation, New York: Macmillan College
Pubtishing Company, ISBN 0-02-352761-7,
1994.

t8] Neural Computing, A Technologt Handbookfor
Professional II/PLUS and Neural|lorlc
Explorer, Pittsburgh: NeuralWare, Inc',
Technical Publications Group, 1996.

t9l R. A. Jacobs, "lncreased rate of convergence
through learning rate adaptation," Neural
Networks, vol. l ,  pp. 295-307, 1988.

[l0] A. A. Minai and R. D. Williams, "Acceleration
of backpropagation through learning rate and
momentum adaptation," Int. Joint Conf,, on
Neural Networfrs, vol.l, pp.676-679, Jan. 1990.

Il] S. E. Fahlman, "An Emprical Study of Learning
Speed in Backpropagation Networks," Technical
Report CMU-CS-88-162, Carnegie Mellon
University, June 1988.

[12] D. T. Pham and S. Sagiroglu, "Three methods of
training multi-layer perceptrons to model a robot
sensor," Robotica, vol 13, pp.531-538, 1996.

[13] D T Pham and S. Sagiroglu, "Synergistic neural
models of a robot sensor for part orientation
detection," IMechE, Proc Instn. Mech Engrs.,
vof .2 I 0, pp. 69-7 6, 1996.

[4] S. Sagiroglu and K. Gtiney, "Calculation of
resonant frequency for an equilateral triangular
microstrip antenna using artificial neural
networks," Microwave OPt Technol. Len.,
vol. l4, no.2, pp. 89-93, 1997.

[5] S Sagiroglu, K. Gtlney, and M. Erler, "Neural
computation of mutual coupling coefficient of
electrically thin and thick rectangular microstrip
antennas," Proc. of International Conference on
Neural Network and Brain (NN&B'98), Beijing,
China, pp. 223 -226, Ocl 27 -30,1 998.

[6] S. Sagiroglu, K. Giiney, and M. Erler, "Resonant
frequency calculation for circular microstrip
antennas using artificial neural networks," Int. J.
of RF Microwave and Millimeter-Wave
Computer-Aided Engineering. vol.8, pp. 210-
277, 1998.

[7] K. Cuney, M. Erler, and S. Sagiroglu, "Neural
computation of mutual coupling coeflicient
between two rectangular microstrip antennas with
various substrate thicknesses," Proc. of
PIERS'99, Nantes, France, pp. 57, July 13-17,
1998.

[8] S. Sagiroglu, K. Guney, and M. Erler,
"Calculation of bandwidth for electrically thin
and thick rectangular microstrip antennas with
the use ofmultilayered perceptrons," Int. J. of RF
and Microwave Computer-Aided Engineering,
vol.9, pp. 277 -286, 1999.

[9] D. Karaboga, K. GUney, S. Sagiroglu, and M.
Erler, "Neural computation of resonant frequency
of elechically thin and thick rectangular
microstrip antennas," IEE Proceedings-
Microwaves, Antennas and Propagation, Pt.H.,
1999, accepted for Publication.

[20] C.P Wen, "Coplanar waveguide: A surface snip
transmission line suitable for non-reciprocal
gyromagnetic device application", IEEE Trans
Microwave Theory and Tech, MTT-17, pp.
1087-1090.1969.




