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ABSTRACT

In this paper variable structure theory (VSS) is
proposed for high performance speed control of
permanent synchronous motor (PMSM) drives. An
improved cascade sliding mode control (CSMC)
strategy is introduced first based on a modified control
law in order to reduce chattering. It is then used in the
CSMC system to improve system robustness and
performance. The results show the superiority of the
CSMC over a linear under load disturbance and
parameter variations.

I. INTRODUCTION
Modern permanent synchronous motor (PMSM), due to
their inherent advantages including high torque
production, fast acceleration and high efficiency, have
found widespread use in differs applications such as
robotics, aerospace and electric vehicles. These high
performance applications require complex still pratical
methods. As it is well know by linear control theory, the
design PI procedure consists in tuning their parameters in
order to achieve the required bandwidth and disturbance
rejection. A quite precise knowledge of motor and load
parameters in thus required. This condition cannot be
always satisfied because some parameters are not exactly
known and/or are subjected to variation during operation.

As a consequence of these phenomena a degradation of
the drive performance occurs. To avoid these problems,
different non-linear control strategies have been proposed
in the literature, such as adaptive control and variable
structure control.

The theory of variable structure systems (VSS) has been
extensively developed during the past 30years (Utkin1977)
the most popular operation regime associated with VSS is
known as sliding mode control (SMC). The main objective
of this operation is to force the states to slide on prescribed
surface called sliding surface. SMC is particularly useful in
power systems with electronic actuators. Commonly, in

these kinds of systems the chattering associated with the
finite-switching frequency is not important, and SMC laws
can be a suitable and extremely high performance option
for its robustness against model uncertainties, parameters
variations and external disturbances. Others remarkable
advantages of this control approach are the simplicity of its
implementation and the order reduction of the closed loop
system.

In this paper a cascade sliding mode control (CSMC)
system is proposed for PMSM drives to enhance system
robustness against motor parameter variations and load
disturbances. In order to reduce the problem of chattering
phenomenon, smooth control functions with appropriate
threshold have been chosen.

II. ACTUATOR MODELING
In order to model the PMSM we make some classical
hypotheses as the spatial distribution of the stator winding
is sinusoidal, the the saturation and the damping effect is
neglected. Using this hypotheses the machines modeling
can be made in Park’s d-q frame. The electrical equation
are:
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The dynamic behavior and electromagnetic torque are
given by
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Equations (1) to (4) yield the bloc diagram of figure 1
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Figure 1 Diagram of PMSM model

I11. SLIDING MODE CONTROL THEORY
VSS differs from other control systems in that it changes
its control structure discontinuously. In the usual control
systems, the control structures are fixed in the process of
controller, even through the coefficients are changed
continuously according to the adaptation systems
mechanism. The same structures are preserved through
the control process. The control actions provide the
switching between subsystems, which give a desired
behavior of the closed loop system. [5,6,7]
Let us consider the following dynamic in which the
control enters linearly:

dg)t( = f(tx,XXs.Xa) avec i =

123,.n (5
Where x = ( x1, x2, x3, ...xn) and S(x) is the switching
surface. The variable structure systems is a nonlinear
system in which slinding mode occurs on a switching
surface Si(x,t)=0; when all of the trajectories are attracted
to the subspace Si =0.Then the state of the system slides
and remains on the surface S (t, x;, X5, X3, ...X;) = 0. A
well-known surface chosen to obtain a sliding mode
regime, which guarantees the convergence of the state x to
its reference x.r is given as following by JJ Slotine
[2,4,6]:

S(X)Z(%-i-k)f“(xmf—x) (6)

Where r is the degrees of the sliding surface and A a
positive constante.

Two parts have to be distinguished in the control design
procedure. The first one concerns the attractivity of the
state trajectory to the sliding surface and the second
represents the dynamic response of the representative
point in sliding mode. One can chose for the controller the
following expression:

u(t) = uq(t) +up (7

Where u, is the control function defined by Utkin, and
noted equivalent control as shows in figure 2 . For which
the trajectory response remains on the sliding surface
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Figure 2 Equivalente Control
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In this case, the invariance condition is expressed as:

S(x)=0. and  S(x)=0. (8)
In the system described by equation 5, when the SM is
arise, the dynamic of the system in SM is subjected to the

following equation §,(x)=0.Thus for the ideal SM we
have also §;(x)=0.

ds; =Si=0 dS dx

9
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The term of u, is added to global function of the controller
in order to guarantee the attractiveness of the chosen
sliding surface. This later is achieved by the condition:

S(x)S(x)<0 (10)
U, =K. sgn (S(x)) (11)
However, this later produces a drawback in the

performances of a control system, which is known as
chattering phenomenon.

The used approach to reduce chattering phenomena was
to introduce a boundary layer around the sliding surface
and to use a smooth function to replace the discontinuous
part of the control action as follows [6,7].

Thus, the controller become as shown in figure 3.

u, = 0 si IS <g

(12)

Uy Ksign (S (x)) si |S(X)|>82

K sign(S(x)) si e<|S®x)l<e
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Figure 3 Sliding mode with boundary layer and
the modified switching law

Where the constant K takes admissible value. It is linked
to the speed of convergence towards the sliding surface of
the process (the reaching mode). Compromise must be
made when choosing this constant, since if K is very
small the time response is important and the robustness
may be lost, whereas when K is too big the chattering
phenomenon increases.

And g, g, are the seuil using to adducing the control.

IV. SMC using to speed control of PMSM:

The SMC is applied to PMSM model, in such a way to
obtain simple surfaces. Figure 4 shows the proposed
control scheme in a cascade form in which three surfaces
are required. The internal loop allows controlling the
direct current id, whereas the external loop provides the
speed regulation which assure the transverse current
reference.

Figure 4: Global structure of the use of CSMC
to PMSM speed regulation

The sliding surface for each loop is chosen as follows:

DIRECT CURRENT REGULATION
When the current error eg4 is:
€4 = lgref — 1g
The surface is deduced from the equation (8) here the
degrees of the sliding surface r equal to 1 so that one
obtain:
(13)

S(ld) = idref - id

Using equations 8 et 9 it follows:

(14)

S(id)zidref.lfj pL i leud
When the sliding mode is occurrence the surface S(ig)

became null also its derivative
S(ia)=0

de _( didrer _’ild —pflq()\))Ld et ud=0 (1 5)

During the convergence mode we have to satisfies the
condition S(x)S(x)<0 by choosing

Ugn = Kgsgn (S (ig) )

So that it result the output command of the direct current
as

Udref = udeq + Udn

Udrer=(‘Ldret dld'ef +Rj, pL—lq(D)Lﬁde gnS(ia)  (16)
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SPEED REGULATION
When the speed error e, is:
€y = Opf-®
The surface is deduced from the equation (8) here the
degrees of the sliding surface r equal to lin order to
evaluate the current reference so that one obtain:

S(o)=¢, (17)
Applied Emilianov and Utkin function it follows:
S(w): Oref— |:p(L1 Lq)ld—i— J :|1 +§(0 (18)

During the convergence mode we have to satisfies the
condition S(®)S(w)<0 by choosing

ign =kg sgn (S (0)) (19)

So that it result the output command of the transverse
current is:

o §+§Cr+@ref +Kasgn (S(0) (29
R . o.La
Ld1d+qu

TRANSVERSE CURRENT REGULATION

Here the degrees of the sliding surface r equal to 1 so that
one obtain:

S(iy) =eq

€q T lgref = 1q

€2y

Using equations 8 et 9 it follows:
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L. (22)

S(lq) = 1qref + Il_,{

During the convergence mode we have to satisfies the
condition S(iq)S(iq)<0 by choosing

Ugn=Kgsgn (S (>iy)) (23)
So that it result the output command as
Uqref—( dlqref qu —p ld(D)I_q+KngnS(1q) (24)

V. SIMULATION RESULTS

the different coefficients using

phenomena are as follow:
10 €l — 1 €0 = 3 Kd
=20, €,4=0.01, g4=0.02

to eliminate chattering

15 €14= 001, €2d =0.02

A cascade structure with SMC of the PMSM was
simulated as described below. Figure 5 presents the
dynamic responses of the system when we introduce a
step speed reference and direct current references. A load
torque (5Nm) is imposed at t = 0.2secto t= 0.4sec. It
clearly shown that the input reference is perfectly
attracted by the speed and the introduced perturbation is
immediately rejected by the control system.

The inversion test gives rise to rapid speed response,
which gives evidences of the regulation.

In figure 6 shows transit response on step change of speed
under various values of the moment of inertia J. And
figure 7 illustrates the transit response on step change of
speed under various values of the resistance R; the
controller leads to required equal wave form of speed
change, without overshoot and chattering, that in order to
test the CSMC performance.

The robustness of the control system is achieved by the
SMC and the cascade structure used. The comparison of
the CSMC and PI regulator is shown in figure 8 , this
results confirm the robustness quality inherent to the
proposed controller.

V. CONCLUSION
The paper deals with the robust speed control of PMSM
using the variable structure systems theory. The

performance of the sliding mode chosen was verified by
simulation .

The SMC is unfeeling to parameters variation, such as the
moment of inertia and load torque.

The chattering phenomenon is been successfully
eliminated from speed control. The effectiveness of the
proposed control system was proved by comparison with
simulation results of the conventional regulator (PI).
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PMSM parameters:

Machine of 2 KW, 220V, 8A, 4000tr/min

R: stator resistance (0.76Q)

Ly, Ly longitudinal and transversal inductance in Park’s
system (1.7mH, 1.8mH).

J: moment of inertia (0.0011Kg.m™)

f: coefficient of friction(5.10°Nm/rads™)

¢g permanent magnet flux (0.140Wb)

P : number of pole pairs (2).

Q :rotor angular speed

Cem: electromagnetic torque, C,: load torque

g, ¢pg: PM flux through the stator winding in park’s
frame.
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Fig.8 Comparison between CSMC and classical regulator PI
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Fig 5. Response system with CSMC
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Fig .6 Response system with CSMC under inertia moment variation J
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Fig.7 Response system with CSMC under statorique resistance R variation
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