ENERGY STORAGE FOR RENEWABLE POWER SUPPLY SYSTEMS

Dr. Matthias Vetter

Fraunhofer Institute for Solar Energy Systems ISE

VI. Elektrik Tesisat Ulusal Kongre Izmir, 17th of October 2019

www.ise.fraunhofer.de

AGENDA

- Introduction to battery R&D of Fraunhofer ISE
- Market segments of stationary battery storage
 - Examples of transmission level
 - Examples of distribution level
 - Examples of customer level
- Key factors affecting bankability and insurability of PV + storage projects
- Conclusions

Battery cells

Current focus topics of Fraunhofer ISE

New materials and process technology for solid state batteries

Battery systems and applications

R&D and services of Fraunhofer ISE

From cells to systems

- Cell characterization
- Module and system design
- Battery management
- Thermal management
- Algorithms for state estimation and life time prediction
- Optimized charging and operating control strategies

Storage applications
System design, integration and quality assurance

- Consultancy during planning phase
- System design and analysis
- Simulation based storage sizing
- Elaboration of specifications
- Energy management systems
- Site inspections and testing
- Monitoring

Testing Electrical, thermal, mechanical

- Safety: Components, systems including functional safety
- Aging: Calendric, cyclic
- Performance: Efficiency and effectiveness
- Reliability: Consideration of operating conditions and system performance with aged components

Batteries can provide up to 13 services to three stakeholder groups

Energy Backup Power Arbitrage Spin / Non-Spin Increased Reserve PV Self-Consumption Frequency Regulation Residential Commercial Demand Service not possible Reduction Voltage Support Service not possible Time-of-Use Black Bill Start CENTRALIZED Management **TRANSMISSION** Distribution DISTRIBUTION Resource Deferral Adequacy BEHIND THE METER Transmission Transmission Congestion Relief Deferral UTILITY SERVICES | DSO DISTRIBUTED

Source: F. Garrett, The Economics of Battery Energy Storage, Rocky Mountain Institute, September 2015.

Transmission level

Batteries can provide up to 13 services to three stakeholder groups

Energy Backup Power Arbitrage Spin / Non-Spin Increased Reserve PV Self-Frequency Regulation Residential Charge Voltage Support Time-of-Use Black Bill Start CENTRALIZED **TRANSMISSION** DISTRIBUTION Adequacy BEHIND THE METER Transmission Congestion Relief Deferral UTILITY SERVICES 1050 DISTRIBUTED

Source: F. Garrett, The Economics of Battery Energy Storage, Rocky Mountain Institute, September 2015.

Transmission level – Example: Primary control power in Germany

Large-scale batteries in Germany

Total power capacity in MW

- cumulative
- new yearly additions

Note: no claim for completeness; usually 75% of installed capacity is qualified for primary control power

Source: German Trade and Invest: Fact sheet – The energy storage market in Germany; Issue 2019.

Distribution level

Batteries can provide up to 13 services to three stakeholder groups

Energy Arbitrage Increased PV Self-Frequency Residential Charge Voltage Time-of-Use Black Bill CENTRALIZED Management TRANSMISSION DISTRIBUTION Resource Deferral Adequacy BEHIND THE METER Transmission Transmission Congestion Relief Deferral UTILITY SERVICES 1050 DISTRIBUTED

Source: F. Garrett, The Economics of Battery Energy Storage, Rocky Mountain Institute, September 2015.

Distribution level – Example: Smart district "Weinsberg" in Germany

Optimization criteria:

Minimization of grid dependency –

Physically not only accumulated

Distribution level – Example: Smart district "Weinsberg" in Germany

Accumulated annual electrical energy quantities

Reasons for differences:

- ➤ Problems with air conditioning → To high temperatures in operation room → Shut-down of CHP unit and battery inverter
- Necessary maintenance interval of CHP unit in winter (!)
- End-users do not behave 100 % as predicted (!)

Customer level

Batteries can provide up to 13 services to three stakeholder groups

Energy Backup Power Arbitrage Spin / Increased PV Self-Consumption Frequency Residential Commercial Demand Service not possible Reduction Voltage Service not possible Time-of-Use Black Bill CENTRALIZED Management TRANSMISSION DISTRIBUTION Adequacy BEHIND THE METER Transmission Congestion Relief Deferral UTILITY SERVICES 1050 DISTRIBUTED

Source: F. Garrett, The Economics of Battery Energy Storage, Rocky Mountain Institute, September 2015.

Customer level – Example: Mixed commercial and residential building "Smart Green Tower" in Germany

PV system **Smart Green** Tower **Smart Green Tower** Roof Facade AC supply AC supply (PV self consumption + grid) Supply of DC grid Supply via DC grid Exchange with public AC grid DC supply of selected loads DC intermediate circuit **Energy management** - Delivery and feeding-in of energy - Optimization of self-sufficiency **Battery storage** - Grid services - 1 MW / 0.5 MWh **Battery** - Modular concept storage ("Living Lab")

Customer level – Example: PV mini-grids

The business case of PV integration in Diesel powered mini-grids

Customer level – Example: Case study for a PV mini-grid in Nepal

The business case of PV integration in Diesel powered mini-grids

- Nepal case: Electricity demand and PV generation is not matching well
- With today's battery storage prices a reduction of the LCOE can be achieved already
- With "near" future battery storage prices the economics will look much better !!!
- With help of a battery storage the overall
 CO₂ emissions can be reduced

Customer level – Example: PV mini-grid for SKA1 low radio telescope in Australia

Developed design proposal

- Central power plant powering 80 % of total telescope load (2.4 MW in average)
 - PV system: 17 MW_p
 - Lithium-ion battery storage:40 MWh / 5.5 MW
 - Diesel genset: 3.2 MW
- 20 % outermost antenna clusters
 - Powered locally
 - 15 remote processing facilities
 (distance from central processing facility > 10 km)
- LCOE: ~ 0.307 €/kWh

Safety

Example VDE application rule VDE AR 2510-50:

Stationary energy storage systems with lithium batteries – Safety requirements

Reliability – Example battery storage with aged battery modules

Battery storage product 1

- Little loss of capacity after 1400 cycles
- Loss of efficiency after 1400 cycles negligible
- Almost homogeneous aging behavior

n	400	1400	400	1400
	module 1	module 1	module 2	module 2
E_in [kWh]	2.03	1.99	2.04	2.02
E_out [kWh]	1.93	1.89	1.93	1.90
Efficiency	95.30%	94.91%	94.57%	94.04%
Capacity loss		2.44%		1.85%
Efficiency loss		0.39%		0.53%

Reliability – Example battery storage with aged battery modules

Battery storage product 2

- Huge loss of capacity after 1400 cycles
- Huge loss of efficiency after 1400 cycles
- Inhomogeneous aging behavior

→ Question of reliability:
Can the cooling system cope with
the increasing heat generation of
aged battery modules ???

n	400	1400	400	1400
	module 1	module 1	module 2	module 2
E_in [kWh]	1.97	1.88	2.08	1.81
E_out [kWh]	1.87	1.57	1.90	1.50
Efficiency	94.86%	83.71%	91.64%	82.63%
Capacity loss		15.99%		21.25%
Efficiency loss		11.15%		9.01%

Performance – Efficiencies: Examples of PV home storage systems

Performance – Effectiveness: Examples of PV home storage systems

Settling times

Key factors affecting bankability and insurability of PV + storage projects Performance – Efficiency: Example of smart district "Weinsberg"

Results of measurement campaign
System concept of district power supply

Analysis of battery storage operation

Key factors affecting bankability and insurability of PV + storage projects Performance – Effectiveness: Example of smart district "Weinsberg"

Simulation based analyses

Source: L. Millet et al.: Extensive analysis of photovoltaic battery self-consumption: Evaluation through an innovative district case-study; Applied Physics Reviews, 2019.

Conclusions

- Large-scale integration of fluctuating renewable energies in power supply systems require storage (grid-connected and isolated mini-grid applications)
 - ➤ Technically → Reliability of power supply
 - ➤ Economically → Business models in post feed-in tariff times
 - → Huge market growth for battery storage expected!
- Quality assurance has to address all relevant factors for enabling bankable projects:
 - Safety: Component and system level as well as functional safety
 - > Reliability: Component and system level as well as consideration of operating conditions
 - Performance: System efficiency as well as system effectiveness
 - > Aging: Has a strong influence on all relevant factors
- "Real world" projects with battery storage:
 - No long-term experience with "new" cell technologies
 - → Appropriate quality assurance measures are key for risk mitigation

Thanks for your attention !!!

Fraunhofer Institute for Solar Energy Systems ISE

Dr. Matthias Vetter

www.ise.fraunhofer.de matthias.vetter@ise.fraunhofer.de