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ABSTRACT 

This paper presents a method for the synthesis of planar 
array patterns, which enables a relatively independent 
control of sidelobe level and beamwidth in two principal 
planes. The method is based on a ‘more conventional’ 
definition of Chebyshev planar arrays, where the pattern is 
of Chebyshev type in only two cross sections, and employs a 
modified-Chebyshev technique that optimizes a few 
parameters leading to beamwidth adjustment in these planes 
for the specified sidelobe level. The design is suitable for 
applications that require low sidelobes and a controllable 
beamwidth, such as wireless applications. An expression for 
the excitation coefficients of the array elements is given and 
numerical examples are used to illustrate the properties of 
the proposed arrays. 
 

I. INTRODUCTION 
Among the different antenna array configurations, planar 
arrays provide additional variables that can be used to 
control and shape the pattern of the array. They can 
provide more symmetrical patterns with lower sidelobes. 
Their applications include tracking radar, search radar, 
remote sensing, wireless communications, and many 
others [1]. 
 
The conventional Chebyshev planar arrays [2, 3] are well 
known for providing sidelobes of equal magnitude. They 
are optimal in the sense that they provide the narrowest 
beam for a specified sidelobe level (SLL), but they suffer 
from directivity saturation when the number of array 
elements becomes large. Very narrow beams are required 
in some applications such as radars. Other applications, 
such as wireless applications, rather prefer the 
independent control of both the beamwidth and the SLL. 
In [4], the authors proposed a new design method for 
linear and circular arrays that enables the beamwidth to be 
enlarged to any desired degree from the minimum 
achieved with the classic Dolph-Chebyshev design [5]. 
This method, which is based on a modification of the 
Dolph-Chebyshev design, was extended in [6] to suit the 
design of planar arrays and in [7] to design wideband 
arrays. 

 
In the work in [6] and [7], however, the beamwidth 
control was possible in only one principal plane of the 
planar array pattern. The beam in other cross sections 
remained narrower than prescribed. In this paper, a 
method is presented for the design of planar arrays that 
allows for the relatively independent control of the SLL 
and the beamwidth in two principal planes. This method 
relies on a “more conventional” definition of Chebyshev 
planar arrays, where the pattern is of Chebyshev behavior 
only in two principal sections, and uses an approach 
similar to that in [4] to enlarge the beamwidth in these 
sections. With the proposed method, the SLL and 
beamwidth in one principal plane can be different from 
those in the other plane, and in each the control of the 
beamwidth and sidelobe level is relatively independent. 
 

II. A MORE CONVENTIONAL CHEBYSHEV 
PLANAR ARRAY 

The normalized array factor of an L L× -element 
conventional Chebyshev planar array is given by [3] 
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where ( )NT x  is the Nth order Chebyshev polynomial, 0x is 
such that 1 0( )LT x R− = , R is the sidelobe level ratio 
(SLR),  and u and v are given by: 
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In (2), d  is the inter-element spacing of the array, λ  the 
wavelength, θ  and φ  are respectively the elevation and 
azimuth angles, and 0θ  and 0φ  determine the steering 



angle. A “more conventional” Chebyshev planar array has 
the following array factor [3]: 
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For this array, the Chebyshev pattern occurs only in the 
planes corresponding to 0=u  and 0=v . The SLR is  

uR  in the plane 0=u  and vR  in 0=v . The parameters 

ux  and vx , which are responsible for the SLL in each 
plane are calculated from 
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The sidelobes in the other cross sections containing the 
direction of maximum radiations are also of equal 
magnitude, but with a different SLR equal to vuRR . 
 
To derive the equation for the beamwidth in the section 

0=u , let Rθ  and Lθ  denote respectively the closest 
angles to the right and the left of the steering angle 0θ  
such that ( ) ( ) uLR R/,F,F 100 == φθφθ , and define the 
beamwidth BW as the width of the main lobe bounded by 

Rθ  and Lθ . Therefore, BW is given by 
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where Rθ  and Lθ , when 0φ  is a multiple integer of 

2/π , are given by [6] 
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and  0 maxθ  is given by 
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In (5) and (6), ( )( )0acos cossθ θ . In the section 0=v , 
the beamwidth is also given by (5) but with subscript u in 
(6) and (7) replaced by v.  
For the case 4120 /)n( πφ += , where n = 0,1,2,3, Rθ and 

Lθ can be easily derived, and for other values of 0φ , a 
numerical method should be used to obtain Rθ and Lθ . 
 

III. PROPOSED DESIGN 
A Chebyshev-like pattern is obtained using the function 
[4] 
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where α and β are real parameters to be determined. 
Clearly, for 0=α and 0=β , (9) reduces to an Nth order 
Chebyshev polynomial. 
The theoretical equation for the array factor of the 
proposed planar array will be 
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In each principal section ( 0=u  or 0=v ), px  is related 
to the sidelobe level ratio R and the beamwidth. Knowing 

px , α is iteratively obtained from [4] 
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and β  from the closed-form expression 
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Subscript u or v should be added in (10-13) to denote the 
corresponding plane. 
In terms of the excitation coefficients, the array factor of 
the proposed array is: 
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In (13), mε and nε are equal to 1 for 1m n= = , to 2 for 
1≠n,m , and nmmn III =  where mI  is 
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nI  is obtained from (14) by replacing the subscript v by u. 

 
When ( )xN eαβ − ∉ , equation (8) does not correspond 

to a polynomial, and as a result, the array factor obtained 
from the excitations given in (14) is a truncated Fourier 
series of (9). Hence, the sidelobes in the two cross 
sections will not exactly be of equal magnitude. When 0φ  
is a multiple integer of 2/π , 0 maxθ and the angles Rθ  and 

Lθ  in each section are as given in (7) and (6) 
respectively, but with 0x  replaced by px with the correct 
subscript. 
 

DESIGN ALGORITHM FOR maxs 0θθ ≤  
To find the excitation currents of the proposed array, 
given by (14), the parameters α , β and px  need to be 
determined. An algorithm is needed to optimize the value 
of px  in each plane. This algorithm was given in [4] for 
the case of linear and circular array, and was adopted with 
few modifications in [6] to work with planar arrays. For 
convenience, this algorithm, for the case when 0φ  is a 
multiple integer of 2/π  and max0θθ ≤s , is given below. 
For max0θθ >s , it can be found in [6], and the case 

4120 /)n( πφ += , where n = 0,1,2,3, can be easily 
derived. 
 
For max0θθ ≤s , the beamwidth in each of the two 
principal planes, as defined in (5), can be written as 
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Equations (16) and (17) respectively yield: 
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Since 2sin( )sA B θ+ = , as deduced from (16) and (17), 
the following iterative forms for A and B are obtained 
making use of (15): 
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A recursive procedure to compute the px  necessary to 
obtain the desired beamwidth for the specified steering 
angle is inferred from the above equations as follows: 
 

1. Start with 0xxp = as computed from (4). 0x  is 

equal to ux in the plane 0=u , and to vx  in the 
plane 0=v . 

2. Compute 0B  from (17). 
3. Update B using (21). 
4. Recalculate px  using (19). 

5. Compute 0A  from (16). 
6. Update A using (20). 
7. Recalculate px  using (18). 
8. Return to step 3 unless there is convergence. 

 
The maximum value of px  corresponds to 0=sθ , giving 

0=+ BA , or sin( / 2)A BW= . Thus 
 

( )max 1/ cos sin( / 2)Px d BWπ= .  (22) 
 

px  is then upper-bounded by maxpx  and lower-bounded 

by 0x , which makes the convergence of the above 
algorithm faster and more stable.  
 
The above design was carried out and equations given 
assuming the same number of elements L and same 
spacing d in the two dimensions of the array. Minor 
changes are needed to account for the case where the 
configuration is rectangular with differing number of 
elements and inter-element spacing. 
 



IV. RESULTS 
As an illustrative example, we first consider a planar array 
with 23L = , 0.5d λ= , and 000 == φθ . In the plane 

0φ =  (v = 0), the SLL is set to -30 dB ( ),Rv 1010= , and 
in the plane 090φ =  (u = 0), 10uR =   (-20 dB SLL). The 
Dolph-Chebyshev design results in the smallest 
beamwidth of 0713.  in the first plane and 099. in the 
second plane, respectively. For a desired beamwidth  

025=vBW  in (v = 0), the following parameter values 
were obtained: 1.0607pvx = , 0.051734vα = , and 

61.v =β . The pattern in this plane is shown in Figure 1, 
where the pattern of the Dolph-Chebyshev design is also 
plotted. Figure 1 shows an enlargement in the main beam 
accompanied by a decrease in the number of sidelobes. In 
fact, the desired beamwidth is achieved and the specified 
SLL is respected. 

 

 
Figure 1.  Patterns in the cross section 00φ =  ( 17L = , 

0
0 0 0θ φ= = , 0.5d λ= , 3 / 210vR = , and 025vBW = ) 

 
For 020uBW = , we have 1.0384pux = , 0.009046uα =  
and 1.502uβ = . The patterns in this plane, for our design 
and the Dolph-Chebyshev design, are shown in Figure 2. 
Also in this plane, it is seen that the desired beamwidth is 
attained, and the sidelobe level is generally maintained. 
 

 
Figure 2.  Patterns in the cross section 090φ =  ( 17L = , 

0
0 0 0θ φ= = , 0.5d λ= , 10uR = , and 020vBW = ) 

 
For the next example, we take an array with ,L 15=  

0
0 35=θ and .0

0 90=φ  We let 1010=vR , ,Ru 10=  

,BWv
035= and .BWu

030=  The 3D array factor plot is 
given in Figure 3. It is concluded that the sidelobes in the 
planes (v = 0) and (u = 0) are as prescribed, although not 
exactly of the same magnitude. In the other cross sections 
containing the direction of maximum radiation, the 
sidelobes are also quasi-ripple, but their SLL is -50 dB. 
The SLL in these directions is the product of the SLLs in 
the two principal planes (SLL is -30 dB for the first plane 
and -20 dB for the second). The main beam width in the 
two planes was adjusted as specified. This property of the 
proposed design enables to choose the size (area) of the 
region to be covered by the main beam while keeping 
radiation in the other directions below a desired level. 
 

 
Figure 3. Three-dimensional pattern of the proposed planar array 
for 15L = , 0.5d λ= , 0

0 35θ = , 0
0 90φ = , 3 / 210vR = , 

10uR = , 035vBW =  and 030uBW =  
 

V. CONCLUSION 
This paper presented a design method for planar arrays 
that permits a relatively independent control of the SLL 
and the beamwidth in the two principal planes 
corresponding to 0=u  and 0=v . Using a “more 
conventional” definition of Chebyshev planar arrays, 
where the pattern is of Chebyshev behavior only in two 
principal sections, the presented method employs a 
modified-Chebyshev technique to enlarge the beamwidth 
in these sections. The design is carried out separately for 
each of the two planes, and in each the beamwidth and 
sidelobe level can be adjusted with relative independence. 
The properties possessed by the resulting arrays make 
them suitable for many uses such as wireless applications. 
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