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Abstract—Earth is being orbited by a number of man-made 
satellites for various purposes, a considerable number of which 
are small satellites such as the micro- and pico- ones for civilian 
purpose. Their main application purposes are communications, 
image scanning, and Earth exploration scanning. This work 
explores the attitude control of symmetric, constant-mas, pico-
satellite and introduces sliding-mode, switching based nonlinear 
control to confine the potential attitude oscillation to arbitrary 
small limit cycle in the vicinity of desired zero steady state 
equilibrium. An example of symmetric pico-satellite, along with a 
phase-plane portrait and some simulation samples, is investigated 
to illustrate the improved performance that may be achieved. 
Further, a mathematical model for a general case of real-world 
symmetric flexible spacecraft for future research is also given.  

Keywords—attitude control; nonlinear control; sliding-mode 
control; pico-sattelites; special gyroscopes; thuster actuators 

I.  INTRODUCTION  

Centuries ago Jean-Jacque Rousseau, famous philosopher 
of French Enlightenment, has stated: “Who dares to say this 
far man can go but not a step further!” Indeed advances of 
sciences and arts, as the foundations of cultures, and 
technologies, as the living needs of Mankind, demonstrated 
unprecedented developments during the last two centuries. In 
particular, in this work the word is about engineering sciences 
and the arts of systems engineering and technologies. For, 
these address important rational (and sometimes irrational) 
aspects of human societies since can be turned not only to 
technological systems supporting the quality of life but also 
into the ever existing human desire for expansion beyond real-
world limits. By and large such is the case of developments in 
applied control designs needed for aerospace engineering 
applications. The present paper is a follow-up, improved re-
elaboration on a previous paper by the first three authors [17].     

It is well known that there are orbiting the Earth a number 
of artificial satellites [1], [3], [6], [7] for various purposes (e.g. 
see Fig. 1) among which there are very many small satellites 
for civilian purpose, in particular some micro- and pico-
satellites [3], [5], [6], [7], [16]. Typically, besides espionage 
and surveillance, the main civilian areas of applications are 

communication purposes [5], [9], [14]. The overall motion 
dynamics of any space structure on the orbit appears as a 
compatible, compound 3D motion relative to the base frame of 
gravity centre in space (e.g., planet Earth) and relative to its 
own frame at its mass centre [3], [21], [24].  In general, 
functions of communications, image scanning, and remote 
scanning exploration of Earth [3], [5] are assigned to a range 
of various pico-satellites. In addition, to these are used for 
various ad-hock applications since as they are of low cost, and 
even dispensable as a rule. Thus these represent small space 
structures that may or may not exhibit flexible deviations [3]. 
[9], [23], [26]. 

 
Fig. 1 A schematic illustration of a small satellite on orbit possessing 
autonomous power supply by solar panel arrays [7].  

The rest of this paper is written as follows. The next 
section is focused on introducing the most important features 
of the inherently nonlinear dynamics of satellite’s oscillations 
about its vertical axis and the troublesome issues involved in 
their attitude control. A reasonably accurate nonlinear model 
of the system dynamics a symmetric constant-mass pico-
satellite on the equatorial orbit is presented in Section III 
along with one classical state-feedback attitude control 
solution based on an linear approximation of the dynamics of 
satellite’s oscillations. Then in Section IV, there is discussed a 
potential application of switching based control law synthesis 
in addition to the traditional pole-placement state feedback 
design. Conclusion and references are given thereafter.  This work was supported in part by grant TUBITAK-FBR-113E595, 2014-

2015 for Turkish-Russian project of Prof. Cingiz Hadjiyev, ITU, Istanbul.  



II. ON IMPLICATIONS OF MECHANICAL OSCILLATION AND 

VIBRATIONS 

      Deep observation of the movement and its association with 
the inner dynamics of any mechanical structure constitute one 
of the keystones of understanding phenomena of oscillations, 
shocks, vibrations and their consequences [3], [9], [19], [21]. 
One may well recall, for instance, the horrifying consequences 
following an earthquake stroke (see Fig. 2) such as the one 
that hit Skopje about half a century ago. In front of our eyes, it 
has changed the entire life not only in the city and its environs 
but also within the entire little Republic of Macedonia. This is 
one of the reasons why so many research efforts have been 
devoted worldwide to the control of nonlinear oscillations and 
vibrations, in general, and in space structures, in particular [3], 
[6], [9], [18] for a long time by now; for instance see [1], [10].  

 

 

Fig. 2  Danger from vibrations [5], [16]: The case of an earthquake stroke 
as the devastating one that hit Skopje on July 26, 1963. 

      Indeed of understanding both spatial and temporal  
phenomena of nonlinear oscillations, shocks, vibrations and 
their consequences emerges as a most significant matter in 
attitude control of real-world satellites and flexible spacecraft 
structures. In addition, since temporal and spatial compliance 
with the mission tasks while orbiting Earth are in the 
foreground of satellites the attitude control must be tight [3].  
 

 

Fig. 3 A schematic diagram along with the local unit-vector frame for 
orientation reference [3], [21], [23]. 

 
Fig. 4 Phase-plane portrait of the system dynamics that ought to be suppressed 
to the feasible minimum magnitude limit cycle [1], [3], [16], [19] in order 
calm orbiting and avoiding danger from local vibrations to be guaranteed.  

 
It should be also noted that controlled synchronization too 

emerges as a significant issue to in the case of deploying 
multiple satellites to perform some specific mission on orbit. 
Naturally, in such a case matter spatial and temporal and 
spatial dynamic phenomena of orbiting satellites become 
rather complex since critical systems are created out there. 

III. ON NONLINEAR SYSTEM DYNAMICS, LINEAR 

APPROXIMATION AND CLASSICAL CONTROL DESIGNS  

B. H. Chen (2002) has sown in [2], when the background 
base is vibration affected a reasonable model of the angle of 
controller attitude can be found as follows: 
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In here the individual terms represent as follows. The term  
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is representing the nonlinear resilience force; term sin( )f t  

describes an induced excitation; and terms 1 ( )c t  and 
3

2 ( )c t , respectively, model the effects of linear and 

nonlinear damping due to dissipative force. Naturally, the 
desired equilibrium steady-state is characterized by zero 

vertical oscillations 0   and 0  . Due to symmetric 
construction the precession and the spin angles exhibit 
motions the momentum integrals of which are mutually 
approximate equal and counter-balanced. Therefore equation 
(1) describes the governing the attitude motion reasonably 
well. Dynamic model of a symmetric pico-satellite in the 

phase plane 1 2x Ox , 1x  , 2x  , 2
1 2[ ]Tx x x 


 

and 2( )x t 
   at t  fixed (i.e. state-space representation of 

plant dynamics) thus appears as  
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Notice that term ( )M u t  represents resulting torque-

momentum generated by satellite’s actuators, control 

0( ; )u u t x


 acting on its mass M  effectively. Apparently, 

(1) and (2) describe an inherently essential nonlinear dynamics 
that exhibits a delicate nature. 

       

Fig. 5  Conventional sattellite attitude control system [1], [10], [17] , [18]  
for a symmetric, constant mass, sattelite with jet thrusters on orbit based 
on ideally linearized model of the satelite’s attitude dynamics. 

 
 Upon the assumption of small magnitude angular motion 

of the operating satellite, 1x    and 2x    ,  

nonlinear dynamics can be can be linearized to 

1 2 1 2( ) [ ( , )/ ] ( ) [ ( , )/ ] ( )

( ) ( ) ( ) ( )
e ex x x x

e e

x t f x x x x t f x x u u t

A x x t B x u t

       

 

   
   

   , (3) 

with  

01 2 (0)

2 1 2 2

0 1
[ ( , ) / ]

/ (0) / (0)
x xf x x x

f x f x


 
    

    
 

    . (4)        

The latter yields further approximated model in the vicinity of 

equilibrium state vector 0ex 


 in terms of equations 

1 2( ) ( )x t x t  ,    2( ) ( )x t M u t .            (5) 

      It is well known from the classical research monographs 
[1], [17] and advanced textbooks [6], [10], [14] that one 
possible solution is the bang-bang (i.e., the ideal relay), also 
called ideal on-off control. It was shown in [1], [18] that the 
bang-bang control represents the optimal control with respect 
to the time since it enforces the fastest transition from the 
given initial to the desired final state; e.g., such as desired 
equilibrium steady state of satellite’s attitude in fact is. This 
somewhat idealized but more elaborate qualitative solution is 
well illustrated in Figure 6, constructed by using the method of 
isoclines. The phase portrait of the satellite sates indicated the 
system main remain operating on a rather narrow limit cycle 
according to magnitudes of the initial states. Thus it has 
sensitive dependence on the initial states 0(0) , 1,2i ix x i   that 

may be caused by possible disturbances.   

Nonetheless, it can be also shown that by appropriate 
system engineering re-design of the plant system model, given 
in Fig. 5, a theoretically a simple bang-bang control can be 
designed that enforces the zero-state equilibrium in closed 
loop. This modified solution but effective time-optimal 
attitude control, which is found using the method of phase-
plane isoclines and vector field of systems dynamics [4], [6], 
[18], is illustrated in Fig. 6.   

 

Figure 6. An elaborated quailtative solution to the bang-bang control of 
satellite atttude via the method of isoclines [1], [4] so as to achieve asymptotic 
stability of the zero-state equilibrium by finite number of switchings in finite 
time.  

 
It should be noted, however, for this purpose some slight 

modification on the satellite body is needed too so as to make 
the unit coefficients in its transfer function model parameters 
amenable to minor adjustments. This design is demonstrated 
by the appropriate distribution of the isoclines as well as the 
vector field of system dynamics in system’s phase plane 
portrait (Fig. 6) so as to make effective the use of the standard 
bang-bang control. Notice that this control law is the most 
elementary switching based control.  

 
Fig. 7 State-transition trajectries in closed loop with a feedback state-regulator 
design LQ-optimal solution Pontryagin’s Maximum Principle [18].  

 
Also, several variants of state-feedback regulator designs 

for LQ-optimal [1], [9], [18] control gain matrix (via either 
solving Lyapunov or Riccati matrix equations) are known in 
the literature. The state transition trajectories of the first such 
LQ-optimal control design solution via Pontryagin’s 



Maximum Principle [17] are given in Figure 7 above. As seen 
these too demonstrate asymptotic stability of the zero-state 
equilibrium, which is only asymptotically  achievable hence 
cannot be guaranteed in finite time.  

IV. AN APPLICATION OF SWITTCHING BASED CONTROLS 

TO SATTELLITE ATTITUDE STABILIZATION   

In here the focus is placed on employing switching based 
control synthesis [13], [20] within the context of state-
feedback regulator stabilization [1], [6], [10]. When subject to 
an especially synthesized, advanced switching control, the 
switching-based activation/de-activation sequence of its jet-
thrusters, i.e. controlling actuators, then it is possible to reduce 
successfully to an insignificant measure the limit cycle of local 
oscillations and thus ensure the desired operation of the 
satellite on its orbit. Yet, synthesis of the needed switching 
law is not a straightforward task despite the great scientific 
advances in switched systems and control theory during the 
last couple of decades, e.g. see [10] as well as [11], [12] and 
[15].  

      The present contribution is a further elaboration on 
switching-based satellite attitude control based on previous 
work [5], [16] by the authors on the grounds of the ideas and 
theoretical results in [11], [12] and [15] as well as [6]. For this 
purpose, nonlinear state equations (2) of satellite attitude 
dynamics  
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transformed to  
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with ( )
1 0:tf          and ( )

2 0:tf          

switched functions according to the discrete-events generated 

by switching function  ( ) : 0, {1,2}t S     .  It 

should be also noted, the control gain in the second equation 
of (6) is determined on the grounds of state-feedback regulator 
design  
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
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using the state-dependent linearized model (3) via the LQ-
optimal control theory [ ], namely  
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along with Lypunov matrix equation 

[ ( ) ( ) ] [ ( ) ( ) ]T T TA x B x K P P A x B x K K RK Q O     
   

,(9) 

so as to satisfy both closed-loop stability and sufficient 
minimization conditions. Here, P  is a positive definite matrix 

whose elements are functions of gains  jkk  in K ,  R  is a 

chosen positive definite matrix while Q  is a chosen positive 

semi-definite matrix.   

        
Fig. 8 Novel switching-based control design to facilitate the attitudes control 
via state-regulator stabilization the gain of wwhich is computed  throuh 
Lyapunov matrix equation [1], [9], [17].  

 
Fig. 9 State-transition trajectories in closed loop under a switching-based 
feedback state-regulator design (6)-(10): In 3 seconds all the transeints have 
disappeared. 

 
       Then a hysteresis-type, switching law is synthesized over 

the overlapping regions i , j  in phase plane 1 2x O x  of 

the satellite, 1x   and 2x   delimited by switching 

surfaces ,i jS , 1, 2i   and 1, 2j   [12]. In such a solution,  

( )t   caused discrete event drives the control sequence 

continuous from the right everywhere in the phase plane. In 
formal mathematical terms, the designed switching law [12] is 
given as follows:   
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0,Whenever t   
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   It should be noted though, the implementations of such a 
switching law based satellite attitude control requires a high-
precision, especially balance-calibrated, compound gyroscope 
sensing-measuring feedback [3], [9], [14]. The schematic 
diagram of such compound gyroscope employing three single 
gimbal control moment gyros is depicted in Figure 10.  
 

 
 
Fig. 10 Schematic diagram of a high-precision, compound gyroscope sensor-
transducer [3]. 

Still, it is believed rather important to give an outline for 
the most important future research application. Namely, the 
real challenging task for future research is to explore and find 
switching based sliding-mode and state-feedback solution to 
the attitude control of a flexible satellite [3], [9], [25], [27], 
which is illustrated by Figure 11 and the outline given in the 

sequel. With right-handed body reference frame 
b b bx y zO  at 

zero attitude angles 
byO is normal to the orbital plane, 

bzO is 

aligned with the vector from the spacecraft to Earth hence g


, 

bxO is parallel to the velocity vector; in this reference frame 

the two solar arrays are aligned with plane 
b bx yO hence their 

installation axes are both parallel to the pitch axis.   

   
Figure 11. For future research challenge: A more realistic schematic of a 
symmetric, constant mass pico-satellite on orbit around Earth [27] .  

 
From the analytical mechanics, for the attitude dynamics 

of a flexible spacecraft (Fig. 10) in Lagrange formalism  
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via using the analysis methodology in [24], it may well be 
derived the rigorous 3D model of any orbiting satellite motion. 
Namely, the model in question, for all 1,2,...,i m , in given 
[25] as follows: 
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since the environmental torque can be decomposed into Earth 
gravitational, aerodynamic, magnetic, solar-radiation pressure, 
and solar and lunar gravitation torques. In addition to 

Lagrange function, notice that: [ ]T
x y z     is the 

angular rate;   is the anti-symmetric matrix of  ; ( )M u


  
represents generalized torque which included both actuation 
control toques and environmental torques (acting 

disturbances); xI , yI ; zI  are the principle moments of 

inertia about roll, pitch and yaw axes; respectively  ,   and 

  are the roll, pitch and yaw attitude angles; e
xM , e

yM  and 

e
zM  are the acting torques excluding the gravitational torque; 

sxiF , syiM  and sziM  are the coupling matrices between the 

attitude and vibration modes of the two solar arrays; pi  is 

the i-th modal frequency of the two solar arrays; pi  is the i-

th vibration mode coordinate of the two solar arrays; pi  is 

the i-th vibration damping coefficients of the two solar arrays; 

0  is the orbital angular velocity; xh , yh  and zh  are the 

angular momentums of fly-wheels installed along the 
byO  , 

bzO   
bxO   axes; 

1 2 3
[ ]T

c c cu u u u


 is vector of the inner 



control torque that along with the required attitude maneuver 
angles, which is generated by installed motors in the 
spacecraft. The only assumption adopted is about the zero 
cross-products inertia among roll, pitch and yaw axes,  ,   
and  .  

V. CONCLUDING REMARKS AND FUTURE RESEARCH  

It has been shown in this paper how effective the 
sophisticated switching based control theory may be in the 
foreseen applications to inherently nonlinear, oscillatory, 
dynamic systems such as aircrafts and space-crafts in motion. 
It has thus provided some tangible insights towards practical 
implementations. Also it has been demonstrated how much it 
is necessary nowadays to carry out theoretical research studies 
on sophisticated advances is systems and control and find out 
how to transcend them into engineering application domains. 
Thus, it is believed not only it contributed new highlights on 
such sophisticated theories but also to techniques of such 
applications oriented studies.  

The illustrative example has provided for the needed 
evidence about achievable closed-loop performance by 
employing the relevant synthesis of switching based controls 
[5], [12], [17], [20]. One category of the advanced switching 
based controls is the celebrated sliding-mode control synthesis 
within the framework of variable structure control systems 
[22], [23], which is a topic for a future research.  
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