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ABSTRACT 
The use of parallel structures, such as a Stewart platform 
(SP), for machine tools is a current trend. Some powerful 
analytical tools are needed to analyse the effect of errors in 
parallel structures. A model of a SP was analysed to include 
all the sources of errors [1]. We developed a similar error 
model to a Stewart platform and a Modified Stewart 
platform (MSP). Both SP and MSP designs have the same 
error models. The model developed here is intended for the 
design of a controller to reduce the effects of the errors due 
to temperature and stress state of the material.  
 

I. INTRODUCTION 
Stewart [2] developed SP about 40 years ago. In this early 
model was developed as a flight simulator for pilot 
training and used hydraulic actuators. However, in the 
early correspondences it was clear that Gough developed 
the structure in 1948 for tire testing. Gough  [3] did not 
publish his work until 1962. Many researchers study the 
SP due to its simple structure, large payload capacity, 
high stiffness and accuracy.  
 
The interference constraints between the legs is a 
disadvantage of the original SP. Due to this limitation, 
legs cannot go far from the z-axis and as a result the 
applied torque about the z-axis is limited contrary to xy-
plane. However, the force in z-direction is higher than xy-
plane since the force applied by each leg should act along 
the axis of the leg. (See Fig.1) In case of a Modified 
Stewart Platform, the more torque can be applied about 
the z-direction because the MSP has less interference 
constraints on the legs. The basic idea of MSP design is to 
place the legs on two different concentric circles [4] as 
shown in Fig.1. 
 
In recent years, the machine tool industry uses a design 
that is completely different from the multi-axis machine 
design. The new structure has six degree of freedom 
(DoF) and it is based on the Stewart Platform. The 
parallel nature of SP is expected to be more rigid and 
accurate from the conventional designs.  
 

Error models developed for conventional designs may not 
be suitable for the new design structure. Wang and 
Masory [5] presented an error model for SP by modelling 
the legs as a serial kinematic chain using the DH-
convention to investigate the effects of the manufacturing 
errors. Ropponen and Arai [6] created an error model 
using the differentiation of kinematic equations, while 
Wang and Ehmann [7] developed another model for SP 
employing differential changes in leg lengths. Patel and 
Ehmann [1] developed an error model that can address all 
the possible error sources, such as manufacturing errors, 
control error, thermal and stress strains.  
 
In this paper, we first present the nominal and accurate 
models of SP and MSP that are similarly formulated as in 
[1], and then the differential error model is developed in 
section IV. Finally, we present some concluding remarks. 
 

II. NOMINAL MODELS 
A Stewart Platform consists of six variable length legs 
that connect a stationary base (we will call it �base�) to a 
moving platform by spherical or universal joints. For the 
nominal model of the Stewart Platform, the following 
assumptions are made:  

i. Each joint has a center about which perfect rotation 
can occur,  

ii. The positions of joint centers are known precisely,  

Figure 1 Stewart Platform (left) and MSP (right) 



 

 

iii. The actuators have only 1-DoF and their motion 
pass through the joint centers and  

iv. The length of each leg can be measured without 
error.  

 

Two coordinate frames denoted by B and P are arbitrarily 
placed in the base and the platform, respectively (See 
Fig.2). Fig.2 and Fig.3 illustrate the following definitions. 
The vectors are denoted in bold case letters. The origin of 
a coordinate frame, B, is denoted by 0B. The left 

superscripts, such as BLi, denote the reference coordinate 
frame for the corresponding vector. The joints on the base 
and the platform are denoted by Bi and Pi, respectively, 
where the subscript i ∈ {1,2,3,4,5,6}. Script Bi and Pi 
denote the joint coordinate frames that are placed at joints 
Bi and Pi, respectively. The vectors Bbi denote the 
positions of the base joint centers with respect to B and 

the positions of the platform joint centers are given by the 
vectors Ppi. A leg vector BiLi that is defined as a vector 
from Bi to Pi with length Li is assigned for the ith leg. The 
lengths Li are measurable.  
 
The vector, q=Bq, shows the position of the origin 0P of 
the platform with respect to the base, and the rotation 
matrix BRP, shows the orientation of the platform with 
respect to the base.  
 
Following Patel and Ehmann [1], BRP is expressed in the 
roll-pitch-yaw (RPY) angles, φ, θ, and ψ. Since the RPY 
angles completely determine the orientation matrix BRP, 
one can simply determines the position and orientation of 
the platform with respect to the base, provided that the 
generalized position vector ℘ =[qT, ΩT]T, where 
Ω=[φ,θ,ψ]T, is given. To control the operation of SP (and 
MSP), the generalized position ℘  and the leg lengths 
L=[L1, L2, L3, L4, L5, L6]T should be known, in general. 
 
The two cases arise:  

1. When L is known, find the generalized position 
℘  (forward kinematics problem).  

2. When ℘  is known, find the leg lengths (inverse 
kinematics problem). 

 
The inverse kinematics problem yields a closed form 
solution, while the forward kinematics problem generally 
does not lead to a closed form solution, as this is the case 
for parallel structures contrary to the serial manipulators.  
 
From Fig.3, the ith leg vector BiLi can be written as, 
 
BiLi=Li

Biai=BiRB(BRP
 Ppi+q- Bbi)   (1) 

 
where Biai is a unit vector in the direction of the ith leg and 
BRBi is the rotation matrix of the ith joint frame with 
respect to the base. By taking the Euclidian norm of both 
sides of equation (1) and using the fact that Biai is a unit 
vector, the inverse kinematics solution is obtained as 
 
Li=2BiLi2=2 BRP

 Ppi+q- Bbi2    (2) 
 
Up to this point, what was done is to derive the nominal 
model of a Stewart platform. It was not mentioned to the 
model of a MSP at all. However, if we look at Fig.2, it is 
clear that the nominal model of MSP is included in the 
model of SP, because the joints are shown at different 
points on the borders of the base and the platform (for a 
SP, three joint positions is enough for each plane as it can 
easily be seen from Fig.1). In case of a MSP, the only 
difference is that two concentric circles each containing 
three joints should be placed both on the base and the 
platform. The definitions of vectors and coordinate frames 
will be same. Therefore, the nominal model for SP is 
directly applicable to MSP without any modification. 
Similar discussion is valid for the accurate models. 
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Figure 2 Nominal Model of a Stewart Platform 
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Figure 3 Vector Relations for the ith Leg 



 

 

 
III. ACCURATE MODELS 

In general, the assumptions made for the nominal model 
are not valid. The position of the tool unavoidably differs 
from the nominal model. Some of the error sources are 
faults in manufacturing and assembly, kinematic errors in 
the actuators, thermal and elastic deformations of the 
material, errors introduced by the control system, 
measurement errors, etc. 
 
Now, we introduce an accurate model based on the Patel-
Ehmann (PE) model given in [1]. The actual model 

introduced here differs from PE model by the introduction 
of the generalized position error ∆℘  on the platform 
coordinates. 
 
 If the assumptions of the nominal model are not valid, 
then the vector relations shown in Fig.3 considerably 
changes. With the introduction of error vectors, the vector 
relations become as shown in Fig.4. At the base, a 
coordinate frame Bi is placed in the nominal location of 
the ith joint. At the same time, a frame aBi is placed at the 
actual location of the joint. Pi and aPi are defined 
similarly at the platform. In the platform, it is introduced 
another coordinate frame, denoted by nP, at the nominal 
position of the platform coordinates in order to include the 
error in the generalized position ℘  of the tool, while the 
coordinate frame P represents the generalized position ℘ . 
The vectors bi and pi give the nominal positions of the 
joints. The vectors δbi and δpi denote the joint location 
errors that are simply defined as vectors that give the 
position of the 0aBi and 0aPi with respect to Bi and Pi, 
respectively. The points eBi and ePi show the end points 

of the actuators, which are no longer coincident with the 
joint centers. The offset vectors ci and di represent the 
errors in the joints. The leg vectors, which connect the 
points eBi and ePi, consist of two components Liai and εiai 
where ai is the unit vector along the ith leg and εi is the 
amount of error for ith leg length Li.  
 
Accurate determination of the error vectors δb, δp, c, d, 
and εa is difficult and the relation of ∆℘  and℘  is 
nonlinear due to nonlinearity of the rotation matrix. When 
the errors are known, ∆℘  has no effect on the equations, 
because the actual position aq of 0P can be defined as 
 
Baq=Bq+BRnP

nPδq.    (3) 
 
From Fig.4, mathematical relations of the vectors are 
stated as 
 
Bbi+BRBi{Biδbi+BiRaBi

aBici+(Li+εi)Bai}-Bq   (4) 
-BRnP(nPδq+nPRP{Ppi-PRPi[Piδpi+PiRaPi

aPidi]})=0
  
 
where the R matrices denote rotation matrices between the 
frames. Rearranging equation (4) and taking the Euclidian 
norm of the arranged equation, the inverse kinematic 
equations can be expressed as 
 
Li=2BRnP(nPδq+nPRP{Ppi+PRPi[Piδpi+PiRaPi

aPidi]}) (5) 
+Bq -Bbi-BRBi{Biδbi+BiRaBi

aBici}2-εi.   
 

Using equation (5), one can compute the leg lengths of a 
SP (MSP) provided that the generalized position and the 
other error vectors are known.  
 
The error vectors δq, δb, δp, c, d, and εa determine the 
accurate model. Normally, it is necessary to model the 
errors accurately. In general, the errors are functions of 
stress F, temperature T, command set S and time t [1]. It is 
also possible that the errors are functions of the 
generalized position and may depend each other. This 
means that although the actuator length Li has a closed 
form solution, it is likely that equation (5) does not have 
an analytic solution. Numerical methods should be 
employed in order to solve the equations. However, the 
computational burden is too much. 
  
The direct relations between error sources and the position 
errors are not well-known. Due to this, the assumption of 
completely known errors is unrealistic. In general, the 
error vector is a function of stress state F of the material, 
the temperature T, the friction forces, time t and other 
undesired environmental or internal effects.  
 

IV. DIFFERENTIAL ERROR MODEL 
To obtain the differential error model, the nominal inverse 
kinematics model is used. The differential error model 
formulates the position error ∆℘  in terms of other error 

Figure 4 Accurate Vector Relations for the ith Leg 
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components. With this formulation, it is possible to see 
how the error vectors affect the accuracy of the SP. First, 
equation (1) is differentiated to yield 
 
dLi

Biai+Lid(Biai)=d(BiRB)(BRP
 Ppi+q- Bbi)+ 

BiRB(d(BRP)Ppi+ BRPd(Ppi)+d(q- Bbi)). (6) 
 
Equation (6) includes the differentials of rotation matrices 
BiRB and BRP. The differential of a rotation matrix R can 
be written as dR=(dΩ)×Rd, where Rd is the desired rotation 
matrix, dΩ=[ω1,ω2,ω3]T is the orientation error vector and 
the subscript × defines the cross operator matrix given by 
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where λ=[λ1,λ2,λ3]T is a vector. Applying equation (7) to 
the differentials of rotation matrices, equation (6) 
becomes 
 
dLi

Biai+Lid(Biai)=(dΩBi)×
BiRBd(BRP

 Ppi+q- Bbi)+ (8) 
BiRB((dΩP)×

BRPd
Ppi+BRPd(Ppi)+d(q- Bbi))

  
where BiRBd and BRPd are the desired rotation matrices. 
Finally, multiplying both sides of equation (8) by (Biai)T, 
and using the fact that Biai is a unit vector, the following is 
obtained 
 
dLi=(Biai)T(dΩBi)×

BiRBd(BRP
 Ppi+q- Bbi)+  (9) 

(Biai)T(BiRB){(dΩP)×
BRPd

Ppi+BRPd(Ppi)+d(q-Bbi)}.
  
Note that if BiRBd= BiRB, then from equation (1), first term 
in the right hand side of equation (9) becomes  
 
(Biai)T(dΩBi)×

BiRB(BRP
Ppi+q- Bbi)=(Biai)T{(dΩBi)×Li

Biai}=0 
 
because this is a dot product of two orthogonal vectors. 
Rearranging equation (9), the following expression is 
obtained 
 
dLi=(Biai)T{(dΩBi)×Li

Biaid}+(Biai)T(BiRB)dq  (10) 
+(Biai)T(BiRB){(dΩP)×(BRPd

Ppi)} 
(Biai)T(BiRB){BRPd(Ppi)-d(Bbi)}   

 
where Li

Biaid= BiRBd(BRP
 Ppi+q- Bbi). Using the vector 

identity vT(r×s)=(s×v)Tr, equation (10) becomes 
 
dLi=(Biai)T{(dΩBi)×Li

Biaid}+(Biai)T(BiRB)dq  (11) 
+{(BRPd

Ppi)×(Biai)}T(BiRB)dΩP 
(Biai)T(BiRB){BRPd(Ppi)-d(Bbi)}.   

 
Equation (11) can be represented in matrix form as 
 
dL=J∆℘ +ℵ dA+ℑ     (12) 
 
 
 

where  
 
dL=[dL1, dL2, dL3, dL4, dL5, dL6]T   (13) 
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dA=[d(Pp1)T, d(bi)T, �, d(Pp1)T, d(bi)T]T∈ℜ 36x1 (17) 
 
ℑ =[ℑ 1, ℑ 2,�, ℑ 6]T    (18) 
 
where 
 
ℑ i=(Biai)T{(dΩBi)×Li

Biaid}, i=1,2,�,6  (19) 
 
ℵ i=[{(Biai

T)BiRB
BRP}T, -{(Biai

T)BiRB}T], i=1,2,�,6. (20) 
 
From equation (12), the generalized position error ∆℘  
can be written as 
∆℘ = J-1(dL-ℵ dA-ℑ ).    (21) 
 
Equation (21) is similar to the expression in [1], except 
the vector ℑ , and the definition of dA does not include the 
actuator errors ci and di defined in accurate model. 
However, we believe that the vector ℑ  can be related to 
these quantities, which is present in equation (21) thanks 
to the definition of the nominal model employed in this 
paper. However, the vectors ci and di should have been 
inserted artificially in the derivation of the differential 
model given in [1].  
 

V. CONCLUSION 
For Stewart platforms, new formulations of the nominal 
and accurate models are derived based on the derivation 
in [1]. The difference is that we employed the global 
position error ∆℘  in the derivation of the accurate model, 
while this is not the case in PE model [1]. Similarly, in PE 
model, the vectors ci and di should artificially be inserted 
in the differential equations to include the actuator errors 
in the dynamics. Although it is not completely derived 
yet, we believe that our approach will not require the 
somehow artificial insertion of actuator errors into the 
equations.  
 



 

 

We also showed that the formulation given in [1] covers 
the Modified Stewart Platforms; therefore, there is no 
need to give a separate formulation for MSP. 
 
The work presented here is still not complete, however, 
the preliminary results are promising to lead to a more 
complete formulation of the error dynamics of the Stewart 
platforms. 
 
The research on the subject is still continuing. Future 
work will include the effect of temperature and stress state 
on the accuracy of the Stewart platforms and the control 
of the error components that leads to a more stable 
operation of Stewart platform based systems. 
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