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ABSTRACT 

This paper presents an electric power monoring based 
on Artificial Neural Network (ANN) for the nuclear 
power plants.  The Recurrent Neural Networks (RNN) 
and the feed-forward neural network are selected for 
the plant modeling and anomaly detection because of 
the high capability of modeling for dynamic behaviors. 
Two types of Recurrent Neural Networks (RNN) are 
used. The first one Elman type of RNN which has a 
feed-back from hidden layer to the input layer neurons 
while in the Jordan type, from the outputs of the 
neural net to the inputs of the neural net.  Although 
this approach enables to realize the whole system 
condition monitoring in operating nuclear power plant 
(NPP), we are especially focused on active power and 
reactive power monitoring as well as power factor 
monitoring. Today, competition in electric power 
supply industry needs to properly evaluate plant 
capabilities and produced power quality, so the 
monitoring of active and reactive power becomes an 
important issue. Therefore active and reactive power 
and their variations are monitored taking their signals 
using the assigned channels and the electric power 
coefficient is simultaneously monitored from these 
measured reactive and active electric power signals.  

I. INTRODUCTION 

The modern electric power system has been continuously 
and rapidly developing to perform the functions for 
generating, transmitting and delivering of electric power. 
With this progress, the complexity of the system has 
grown. To manage this complex system, monitoring, 
control and operation functions are computer assisted. The 
systems for computer control of electric power systems 
have evolved as computer and monitoring technologies 
evolved. Monitoring is a key element in assuring quality 
and reliable power. It can assess the overall performance 
of a power plant and identify trends that can help reduce 
or even eliminate the impact of disturbances.  

In this paper we give an attention the power monitoring 
issue in the nuclear power plants contributing previously 
published paper, which presents a method for an on-line 
monitoring system for the nuclear power plants developed 
utilizing the neural networks and the expert system[1,2]. 
Automated monitoring of large power plant is a well-
established practice in the industry. Several computer 
systems are employed today in a control room to monitor 
various parts of the power plant[3,4]. Introduction of 
advanced data acquisition systems and intelligent 
technique have accelerated development of new 
monitoring systems. Recently, promising ANN 
approaches have been developed to solve problems like 
tuning of controllers, process identification, sensor 
validation, fault diagnosis and monitoring in power[1-5]. 
Table 1 shows some ANN and learning algorithm with 
use of ANN for Power Plants [6]. 

A real-time condition monitoring at nuclear power plants 
(NPPs) is one of the most important tasks for operational 
safety. Conventional monitoring methods in the present 
NPPs can detect anomalies when the monitored signals 
exceed their error boundary. However, it is difficult to 
detect the symptom of anomalies with this method 
because of the wide error boundary covering about 30% 
to full power operation. Therefore, we proposed a neuro-
expert methodology that is more preferable than the 
threshold-level-based one for early fault detection. The 
main purpose of this monitoring system is to complement 
the conventional alarm system and to support operators. 
Neural network techniques already have been applied to 
plant monitoring and shown good performance for early 
fault detection[7,8]. However, the neural network itself 
can merely detect a deviation from the normal state, and 
requires an interpretation of the deviation by an expert to 
diagnose the cause. On the other hand, establishing 
independent expert systems for plant monitoring involves 
too many complicated tasks such as collecting knowledge 
and rules about plant design. This motivates the 
integration of neural networks and an expert system for 
plant monitoring. 



 
Table 1. Application of ANN for Power Plants 

Nature of the 
problem 

ANN and 
Learning 

Algorithm 
Use of ANN 

Hybrid 
Feedforward / 

Feedback 

Prediction of 
transient 
responses 

Hybrid self 
organization / 

Back propagation 

Prediction of 
heat-rate in 

nuclear power 
plants 

Identification and 
modeling 

Recurrent 
multilayer 

perceptron and 
Backpropagation 

Modeling of 
Power Plant 
Dynamics 

Feedforward / 
Backpropagation 

Tuning of power 
systen stabilizers 

Feedforward / 
Backpropagation 

Control of load 
frequency Control 

Feedforward / 
Backpropagation Adaptive control 

Feedforward / 
Backpropagation 

Estimation of 
process variables 

in NPP 

Not specified Protection of 
sensor outputs Sensor validation 

Self-organizing 
and Specht’s 
Probabilistic 

Neural Network 

Estimation of 
probability 

density function 
of process 
variables 

Feedforward / 
Backpropagation 

Generation of 
membership 

functions for a 
fuzzy expert 

system in NPP 

Feedforward / 
Backpropagation 

Recognition and 
classification of 

transient events in 
NPP 

Feedforward / 
Backpropagation 

Recognition and 
classification of 

wear scars in NPP 
Feedforward / 

Backpropagation 
Recognition of 

accidents in NPP 

Feedforward / 
Backpropagation 

Recognition of 
incipient faults in 
rotating machines 

Monitoring and 
fault diagnosis 

Perceptron and 
Self-optimizing 

stochastic 
learning algorithm 

with dynamic 
load architecture. 

Classification of 
accidental 

condition of NPP 

In this study, as an application of electric power 
monitoring and detecting abnormal operational condition, 
we proposed to use ANNs. Hence the rising operation 
effect was followed and determined from active power, 
reactive power factor variations by means of various 
ANNs structures. 

II. BASIC ELECTRIC POWER QUANTITIES        
TO BE MONITORED 

Most of time, an electric power system operates under 
sinusoidal steady state condition, i.e. the voltages and 
currents anywhere in the system are considered to be near 
perfect sinusoids. This operating condition is reffered as 
Sinusoidal Steady State Condition (SSSC). This 
assumption and resulting analysis methods are appropriate 
to describe the operation of the system for a rather large 
number of applications, such as power flow, short circuits, 
etc. It is also possible that certain components of the 
system may results in deviations from the pure sinusoidal 
steady state operation. The voltage and electric current 
waveforms may be periodic but they are not sinusoidal. 
This operating condition is reffered as Periodic Steady 
State Conditiom (PSSC).  Many power system analysis 
problem are based on the following assumptions; -the 
power system operates under SSC, -the power system 
exitation is a pure sinusoid, -the power system comprises 
only linear elements. Accepting above conditions we can 
express voltages and electric currents anywhere in the 
system a pure sinusoidal forms. 

)cos()( θω += tVtv m     (1) 
)cos()( ϕω += tIti m   (2) 

where  Vm is the maximum value of the voltage 
 Im is the maximum value of the electric current  
 ω is the angular frequency 
 θ is the phase of the voltage 
 ϕ is the phase of the electric current 
The instantaneous power flowing into the device is: 

)()()( titvtp ⋅=    (3) 
Realizing this multiplication reveals that  the power 
consists of two terms: one which is independent of time 
and another terms which is sinuoidal function of time and 
its angular frequency is double of that of voltage or 
electric current. This time dependent power is pulsating, 
i.e. flows into and out of the device with zero net.  Then 
the averge power is 
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)cos( ϕθ −= rmsrms IVP .  (5) 

The difference between the voltage phasor’s angle and the 
current phasor’s angle is defined as power factor angle. 

φ ≡(θ -ϕ)   (6) 

The last term of the Eq.5 is reffered as the power factor 
since many decades ago.  

 power factor ≡ cosφ  (7) 

Where 
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There are four quantities expressing power but they are all 
phsycaly different quatities. To distinguish them, the 
following nomeclature shown in Table 2, has been 
adopted many years ago and it is used in power 
engineering [9]: 

Table 2. Electric Power Quantities. 
Quantity Name Units  
S Coplex Power VA (Volt Ampere) 
Sa Apparent Power VA (Volt Ampere) 
P Real Power W (Watt) 
Q Reactive Power VAr (Volt Ampere, reactive) 
 

*~~
rmsrms IVS =    (8) 

rmsrmsa IVS =   (9) 

)sin()cos( ϕθϕθ −+−= aa jSSS   (10) 

jQPS +=    (11) 

)cos( ϕθ −= rmsrms IVP   (12) 

)sin( ϕθ −= rmsrms IVQ   (13) 

Then the power factor can be computed using following 
relation. 

power factor  = 
aS
p

 

  
 
 
 
 
 
 
 

Figure 1. Phasor Representation of Apparent Power, 
Active Power and Reactive Power. 

 
We can decide the power factor is lagging or leading by 
observing the voltage and current phasors. Generally 
supply voltage regarded as the reference quantity. The 
power factor is lagging when the current lags the supply 
voltage and leading when the current leads the supply 
voltage. A majority of loads served by a power utility 
draw current at a lagging power factor. When the power 
factor is unity then active power equals apparent power 
(P=S). But, when the power factor is less then unity, say 
0.7, the power utilized is only 70%. This means that 30% 
of apparent power is being utilized to supply reactive 
power, VAr demand of the system. It is therefore clear 
that the higher the power factor of the load, the greater the 
utilization of apparent power [10]. 
In the deregulated environment, competition in the 
electricity supply industry distincly differentiates between 
generation and transmission functions of a conventional 
verticaly integrated utility. Open access permits all 

players to inject real power into a system with few 
restirictions. As generator also provide reactive power to 
the system. While the competition for active power is 
quite evident from this distinction, it is also has a 
significant cansequences on the ensuring of reactive 
power. Adequate reactive power support and voltage 
regulation services are required by the system to enable 
secured transaction of active power. Therefore their 
reactive power outputs should be financially 
compensated. The paper in Ref.[11] state that a 
generator’s Q-outputs has double applications. One is to 
support the shipment of its own active power, and the 
other is to support system security. Therefore 
compensation should be made the second component 
only. Reactive power support and valuations take a great 
attentions in last years, trying to answer to the questions 
of usage allocation, -what fraction of reactive capability 
of a generator is used to supply a particular load[12]  An 
other great interest comes from voltage stability analysis 
using VAr reserves[12,13]. Most important reactive 
power support is dynamic or variable Var support 
provided by synchronous condenser and generators. 
 

III. MONITORING SYSTEM OVERVIEW 

The Borssele NPP represented in the Fig. 2. is a two-loop 
pressurized water reactor with nominal electric power 
output of 477 MWe.  

 

 
Figure 2. Reactor System 

A new data collection and diagnostics system is devised 
by the year of 2001 and extensively used in the new 
operation in the start-up of the new core 29 September 
2001 and thereafter. New measuring system of the 
Borssele NPP has been presented in Ref.[14]. The 480 
MWe Borssele PWR (KCB) is owned and operated by 
NV Electriciteits-Productiemaatschappij Zuid- Nederland 
(EPZ), and located near the Westerschelde estuary. The 
single unit plant was built over the years 1968 to 1973 by 
Siemens/KWU and achieved a life time load factor above 
the 80% over the first 24 years. In the first half of 1997 
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the world's most ambitious nuclear backfitting project 
successfully finished[15] and the power plant operation in 
the core cycles in '98 and '99 achieved to average load 
factor above 91%. The new plant data collection and 
processing system consists of two sub-systems: 

a) Monitoring of plant DC signals of the plant (max 96 
signals) with fixed sampling rate of 10 samples/sec. 
used for continuous operational history recording with 
the aid of plant transient analysis (MR-System). 

b) The reactor noise diagnostic system with measuring 32 
AC/DC signals (MS measuring system) with aid of 
reactor noise and primary coolant pumps induced 
vibrations and core barrel motions [16].  

Both systems are built in National Instrument's (NI) 
hardware and Labview software system and the 
continuous data of the both system is connected through 
the LAN for the continuous observation of the plant 
behaviour. In this paper we used the signals of the 
continuous operation of the plant through the DC 
measuring system (MR) with 96 process signals.  

IV. RECURRENT NEURAL NETWORKS AND 
FEED-BACK CONCEPT. 

Recurrent Neural Networks (RNNs) are a special type of 
the dynamic neural nets. In this sense, there are two kinds 
of the recurrent networks, one of them is Elman’s 
recurrent neural net [17] and another one is Jordan’s net 
[18]. According to general principle of the recurrent 
networks, there is a feed-back from outputs of some 
neurons in hidden or output layer to neurons in input 
layer. These feed-back connections in the Elman’s neural 
nets are from the outputs of neurons in hidden layer to the 
input layer neurons and in Jordan’s nets are from output 
layer to nodes in input layer, which are called as context 
nodes. This part of the input layer that includes the 
context nodes is named as context layer and it plays role 
to store internal states in the Elman’s and Jordan’s nets. 
These types of RNNs can be easily trained using the 
Back-Propagation (BP) training algorithm, which is well 
known algorithm in related literature. 

V. APPLICATION 

In this study, three types of time-independent (patterns) 
neural networks, which are BP, Elman and Jordan type 
RNN, were applied to Borssele NPP data for anomaly 
detection. All three networks architectures have 44 inputs 
and outputs nodes and 50 hidden nodes to follow various 
process signals and a pair of them is electric power 
signals. Here, output vectors are the same as the input 
vectors. To train the all neural network, 1 minute sampled 
data of the power rise from 200 MWe to full power 480 
MWe were used including the re-calibration period of 
power and sensor signals. After sufficient learning 
iterations the neural network performances were tested 
using the steady-state data acquired for different time 
periods.  

An example of the neural network performance during the 
learning period is given in Fig. 3 for the BP, Elman and 
Jordan methods with their deviations from the observed 
power rise to steady-state full power operation period. 
After the learning period is succeeded, the operational 
data sampled with 1 sample/second is used for the 
following of the operation of the power plant using all 
three networks for testing the performance of three 
different networks: 
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Fig. 3 - Neural networks’ training results for Elcetric 
Power variations (Channel 42 in Fig.2). 

In this sense Fig. 4 shows the performance of  three 
diffferent NNs to reflect operational changing in the stady 
state region of the data. 
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Fig. 4 - Neural networks’ test results for steady-state data. 
Where time t1 is the last steady-state operation (data of an 
operation between November 8, between time midnight 
00 hrs to 07:30 hrs of 2001) with 1s/s data included to the 
learning period. The t2 (Nov. 15, midnight time 00 hrs to 
07:30 hrs) period is the full power operation period of the 
recall of the three different neural networks. In this period 
reactor power is changed due to the rinsing operation 
(condenser spooling) in time duration of about 4 hrs.  

While in the learning period such an operation is not 
included, the all three neural networks indicates the 
operational deviations depending on the network 



characteristics. The t3 (Nov. 22, midnight 00 hrs to 07:30 
hrs) and t4 (Nov. 29, midnight 00 hrs to 07:30 hrs) are 
periods of the normal power operation. Testing of the 
neural networks is periodically continued for each 4 
weeks. According to the results of the Fig.4, the most 
dominant results can be revealed by the Elman’s neural 
network. 

VI. CONCLUSION 

Application of the neural networks was satisfactorily 
implemented with the present system for filtering the 
reactor power operation with one-second time interval 
that is even five times faster than the plants processing 
system that works only 5s time intervals. In this study 
three different neural networks BP, recurrent neural 
networks Elman and the Jordan worked well but different 
manner. According to results, it is concluded that is 
Elman-RNN amplifies the deviations with clear picture, 
Jordan-RNN shows deviations but with oscillating 
behaviour that it can be improved by selecting smaller 
initial weights, BP method is less sensitive to the smaller 
deviations in the signals.  
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Figure 5. The monitoring results of powers and power 
factor by Elman’s NN. 

In this sense, the best performance is exhibited by the 
Elman’s RNN defined in this study which is the modified 
BP structure based on the feedback concept. Therefore we 
prefere to use the Elman’s RNN stuructures in terms of 
following the active and reactive power together with 
power factor variations as shown in Fig. 5. Hence the 
rinsing operation effect can be easily detected from the 
active power variations. Also this effect can be slightly 
seen from the reactive power variation, but this property 
mentioned above can be observed by small signal 
variations from the power factor variation comparing with 
the reactive power variation.    
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