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ABSTRACT 

Statistical neural networks are good pattern 
recognition structures. Basic problems of these 
networks which are known for their high accuracy 
results in most applications are excessive memory 
consumption and computational complexity. One way 
of solving computational complexity problem is to 
reduce the dimensions of feature vectors. Since 
developing medical data acquisition tools produce 
increasing amount of data, interest of scientists has 
been attached to this problem. In this work success of 
different types of data reduction methods have been 
examined and compared. As a result of experiments it 
is figured out that it is possible to reduce the 
computational load without lowering accuracy in these 
networks via data reduction. 
 

I. INTRODUCTION 
Statistical Neural Networks are known as good classifiers. 
In many applications, these networks can perform better 
than others. However in these structures, memory 
requirement and computational complexity are extremely 
high. By adding new instances to the training set, these 
problems grow faster. To maintain these weaknesses the 
training set may be reduced, but a reduced training set 
may lower the accuracy of the network.  
Being a solution to that problem, size of the feature vector 
may be shrunken by some rule, which is called as 
dimension reduction. In the literature there are many 
dimension reduction techniques such as Principal 
Component Analysis (PCA), Linear Discriminant 
Analysis (LDA), Kernel-PCA (KPCA) and Kernel-LDA 
(KLDA). In this work, the effects of these reduction 
techniques on statistical neural networks are analyzed. To 
compare the performances of these methods, three 
datasets which are taken from UCI MLREP Database [1] 
(which are New Thyroid, Pima Indian Diabetes and 
Wisconsin Breast Cancer -WBCD-) are used. Since these 
datasets are well-known, details of them are not included 
in this work; but for further information, see [1-7].  
Section 2 describes the statistical networks briefly. 
Dimension reduction methods are introduced in section 3. 

In sections 4 and 5, details of the applications and results 
are proposed. 
 

II. STATATISTICAL NEURAL NETWORKS 
Simply, statistical neural networks combine statistical 
techniques with neural network structures. Radial basis 
function neural networks (RBF), generalized regression 
neural networks (GRNN) and probabilistic neural 
networks (PNN) are main well-known supervised 
structures which are explained briefly following in 
subsections  
 

RADIAL BASIS FUNCTION N.N. (RBFN) 
RBF Networks typically have three layers: an input layer, 
a hidden layer and an output layer. Input and output layers 
are related to the input vector space and the pattern classes 
respectively. Hence, the entire structure is degraded to 
determine the hidden layer’s centers and weights between 
hidden and output layers. Activation function of jth hidden 
layer neuron is defined by a center (Ci) and a bandwidth 
(σi). The activation function is a Gaussian curve defined 
as 
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Output of the jth output neuron is found by 
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where ωij is the weight between the ith hidden neuron and 
jth output neuron, K is the number of the neurons in the 
hidden layer [8]. 
 

GENERALIZED REGRESSION N.N. (GRNN) 
GRNN is a special case of RBF where the centers and 
bandwidths are determined by the training data. 
Alternatively, learning phase of a GRNN is not iterative. 
In the GRNN structure, ith training vector xi is the center 
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of the ith gaussian kernel (RBF unit). For a given x, output 
of the ith RBF unit is  
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where (σ) is a smoothing parameter determined by the 
user. The output of the entire network is 
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network for xi. 
If x is close enough to ith training vector xi, αi, which is 
related to xi, becomes maximum and the desired output y 
is close enough to yi [9]. 
 

PROBABILISTIC N.N. (PNN) 
PNN [10] is also known as Bayes-Parzen Estimator. 
Output of the PNN for a given feature vector x is 
determined by Bayes Decision Rule. X is a member of the 
ith class if  
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where fi(x) is the probability density function, Pi is the  
occurrence probability and Li is the misclassification 
probability of ith class respectively. If the density 
functions of the classes are known, this equation can be 
solved. To realize the density functions, a nonparametric 
estimation technique known as Parzen Windows is used: 
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III. DIMENSION REDUCTION 

In this work all classifiers are good for pattern recognition 
but their memory consumption is extremely high. One 
way to reduce memory consumption is adjusting data size 
in a proper way. Reducing the dimension of feature 
vectors is especially important where lowering training set 
is not allowed to lower. Dimension reduction can be made 
by linear and nonlinear transforms. Geometrical 
distribution of data on feature space is the key for 
choosing which transform can represent this distribution 
better. 
 

LINEAR PROJECTION METHODS  
PCA and LDA are two important statistical feature 
extraction tools for the structure of evaluating data. 
Basically, a set of correlated variables is transformed into 
a set of uncorrelated variables, which are ordered by 
decreasing variability. PCA is an unsupervised reduction 
method, so it doesn’t need labeled training. Given a data 

set of n d-dimensional observations X=x1,…,xn, xi∈Rm. 
The mean vector μ and dxd covariance matrix Σ is given 
by 
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Eigenvectors and eigenvalues of this covariance matrix 
are computed. Eigenvectors represent basis of the new 
vector space, and their corresponding eigenvalues give the 
"significance" of each eigenvector. Usually there are just 
a couple of large eigenvalues, and the rest of eigen values 
can be ignorable. Eigenvalues are sorted in decreasing 
order; call the largest eigenvalue as λ1 and corresponding 
eigenvector as e1, the second eigenvalue λ2 with 
eigenvector e2, and so on (λ1<λ2<…<λm). The top k 
eigenvectors are chosen and the rest of the dimensions is 
assumed as they generally contain noise. We form a dxk 
projection matrix A, whose columns consist of the 
selected eigenvectors. The original data is projected onto 
new principal components space by 

)( μxAx −=′ T     (9) 

where x′ is the projection of observation vector x and AT 
is the transpose of A. 
Geometrically, data points form as a d-dimensional, 
hyperellipsoidally shaped cloud. Eigenvectors of the 
covariance matrix are the principal axes of this 
hyperellipsoid. Principal component analysis selects the 
directions along which the variance of the cloud is 
greatest [11]. 

Let the labeled training data, T ={(x1, y1), ... , (xn, 
yn)}, xi∈Rm and y∈Y={1, 2, ... , c: class number}. A 
subset of labeled dataset which belongs to only one class 
can be shown as Iy={i: yi=y}, y∈Y. Inner-class Sw and 
between-class Sb scatter matrixes can be defined as in 
(10) and (11). 
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μ in the equation represents general mean vector for 
whole data, and μy, y∈Y shows class mean vector. 
The main aim of LDA is to find linear projection of data 
(z=WTx) and, connected with this projection, to maximize 
the class discrimination criterion (12). 
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~  inner-class and between-class are new scatter 

matrixes obtained by data projection [12-13]. 
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NONLINEAR KERNEL METHODS 

Well known linear transforms (PCA and LDA) can be 



improved for dimension reduction by kernel functions. 
Traditional methods, PCA, LDA and their derivatives in 
literature, can result successfully where linear projections 
are adequate for reduction. If data distribution forms the 
maximum variance with a nonlinear projection, PCA and 
LDA will be insufficient for this kind of applications. To 
overcome this situation, data should be mapped 
nonlinearly to another feature space ( )(: XX φφ →  [14]. 
With this mapping operation feature vectors pass over a 
higher dimensional space: . After 
transform it is assumed that data has zero mean for 
computational simplicity. Thus joint-variance matrix can 
be computed as in 
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Mathematically, eigenvector and dimension that 
maximizes variance are in same direction. For this reason 
equation  must be solved. First of all, eigenvalue 
vector is assumed nonzero ( ), so eigenvector  can 
be defined as a linear combination of 
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After substitution of statements, nonlinear principal 
component analysis can be expressed with a common 
kernel function definition ( ) as, T
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In this way nonlinear projections can be realized by 
kernel functions on higher dimensional spaces. 
With a similar approach kernel function adaptation of 
LDA can be obtained. Because of transformed 
representation of original data space, inner-class ( ) 

and between-class ( ) scatter matrixes must be 
computed according to this transformed space 
representation. Consequently, on the high dimensional 
space, it is obtained maximum inner-class discrimination 
and minimum between-class variance as possible as it can 
[15, 16]. 
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IV. APPLICATION 

In this work, effects of different dimension reduction 
methods on the performance of the statistical neural 
networks were analyzed through biomedical data. The 
datasets were taken from UCI MLREP Database. At the 
first step, missing valued datasets were considered. If a 
dataset has missing values, these values were filled by 
inner class mean imputation method [17].  
In this work, as a linear projection method, unsupervised 
PCA and supervised LDA were used. Furthermore, as a 
kernel approach (i.e. nonlinear projection) unsupervised 
K-PCA and supervised K-LDA were utilized on 

reduction evaluation. RBF and Polynomial kernel 
functions are considered in K-PCA and K-LDA. 
Approximately 66% of the datasets were used for 
training; remaining portions were used for test sets. In the 
first stage of learning phase, optimum spread values for 
all neural classifiers were found by a trial-by-error 
strategy by randomly selected training sets. For 
comparison purpose between original and reduced 
datasets, original maximum test accuracy results which 
are found by optimum spread value for each classifier, 
are shown in Table-1. 
 

Table 1: Test accuracies in percentages for original datasets 

 Thyroid WBCD Pima 
PNN 92,21 97,13 69.89 

GRNN 89,61 87,70 69,89 

RBF 68,83 65,98 65.06 

 

Table 2: Maximum test accuracies in percentages for reduced 
Thyroid dataset 

 PNN GRNN RBF 
PCA 92,21 (4) 89,61 (4)   68,83 (3) 

LDA 92,21 (3) 90.91 (3) 68,83 (3) 

K-PCA(rbf) 68,83 (3) 68,83 (3) 29,87 (3) 

K-PCA(poly) 92,21 (4) 89,61 (4) 68,83 (3) 

K-LDA(rbf) 68.83 (3)  70,13 (4) 18,18 (3) 

K-LDA(poly) 88.31 (3) 77,92 (3) 68,83 (4) 

 

Table 3: Maximum test accuracies in percentages for reduced 
Pima dataset 

 PNN GRNN RBF 
PCA 72,49 (4) 72,49 (4)   65,06 (3) 

LDA 73,98 (3) 73,98 (3) 65,06 (3) 

K-PCA(rbf) 65,06 (3) 65,06 (3) 64,68 (3) 

K-PCA(poly) 72,49 (4) 72,49 (4) 65,06 (3) 

K-LDA(rbf) 65,06 (4)  65,06 (3) 88,10 (3) 

K-LDA(poly) 65,56 (3) 65,56 (3) 65,06 (3) 

 

Table 4: Maximum test accuracies in percentages for reduced 
WBCD dataset 

 PNN GRNN RBF 
PCA 98,36 (2) 97,95 (3)   88,93 (3) 

LDA 98,77 (3) 97,95 (3) 85,25 (2) 

K-PCA(rbf) 65,57 (2) 97,54 (2) 97,95 (2) 

K-PCA(poly) 98,36 (2) 97,95 (3) 92,62 (2) 

K-LDA(rbf) 95,49 (3) 96,72 (3) 97,54 (3) 

K-LDA(poly) 98,77 (2) 97,95 (2) 90,98 (3) 



At the final phase of the work, dimensions of the datasets 
were reduced by using different reduction methods which 
were explained in previous section and reduced datasets 
were obtained. Test accuracies of the reduced datasets 
were shown in Tables 2-4. Reduced sizes of the feature 
vectors which give the best test accuracies are shown in 
parentheses.  

 
IV. RESULTS AND DISCUSSION 

The main disadvantages of the statistical neural networks 
are high memory requirement and computational 
complexity. To solve this problem, size of the feature 
vectors can be reduced by using dimension reduction 
techniques. As seen in Table 1, PNN gives the best results 
and RBF gives the worst results for original datasets. By 
comparing the Tables 2-4, PNN is the best classifier 
again. For the reduced Thyroid dataset, the best accuracy 
is obtained by using LDA and PNN as 92,21%. In this 
case, size of the feature vector is just 3. For the Pima, the 
best score is obtained by K-PDA (rbf) and RBF as 
88,10%; and this result is the only one which RBF 
outperforms the others. For WDBC, PNN is the best 
classifier again. In this case, LDA and K-LDA (poly) give 
the best results as 98,77%. Feature vector sizes are 3 and 
2 for LDA and K-LDA (poly) respectively. These results 
are better than the accuracies of original datasets. On the 
other hand, by comparing the effect of the reduction 
methods respect to accuracies, it is seen that LDA is better 
than others in general. By combining these results, it is 
clear that the dimension of the feature vector is an 
important parameter for the statistical neural networks. 
 

V. CONCLUSION 
Especially traditional linear and kernel based dimension 
reduction methods are draw attention for many scientific 
application areas in last decade because of increasing 
amount of produced data by developed tools. In this work, 
effects of both linear and nonlinear techniques have been 
evaluated in biomedical datasets with statistical neural 
network structures. Results show that, with increased gain 
or considerable loss in accuracy, reduction techniques can 
be applied as a preprocessing technique for the statistical 
neural networks. 
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