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Abstract 

The robust ∞H  control problem for a class of uncertain 

switched linear systems by using the variable structure 

control is investigated. A robust ∞H  single sliding surface is 

shown to exist as long as a convex combination of the 

subsystems of the switched system is robustly stabilizable 

with disturbance attenuation level γ . A switching law is 

constructed via the single Lyapunov function technique. 

Variable structure controllers of subsystems are designed so 

as the resulting closed-loop system guarantees the robust 

∞H  performance. An illustrative example and simulation 

results are given to demonstrate the effectiveness of the 

proposed design method.  

1. Introduction 

Switched systems are an important class of hybrid 

systems which consist of a family of continuous-time/ 

discrete-time and logic rules specifying which subsystem 

is activated along the system trajectory at each instant of 

time. Many challenging issues in analysis and design of 

switched systems due to their significance in both 

theoretical study and engineering applications exist. 

Switched systems that are linear and do not have 

uncertainties were extensively studied, e.g., see [1] and 

references therein. On the other hand, [2] represents the 

seminal contribution on control of uncertain systems.  

Work [3] presented a state-partition-based feedback

switching law to study the quadratic stabilization of 

switched linear systems in stable convex combinations 

using a single Lyapunov function. In [4], 2L  induced 

norm of switched systems with external disturbances was 

considered under the condition of large dwell time. For 

uncertain discrete-time switched systems, the authors in 

[5] addressed 2L  gain analysis and control synthesis 

under arbitrary switching. In [6], the robust ∞H  control 

and stabilization of uncertain switched linear systems are 

investigated via the multiple Lyapunov function approach.  

It was shown in [6-8] switched systems are a kind of 

“variable structure” systems [9]. Therefore sliding modes 

may exist on the switching planes even though not 

expected to happen [8]. When sliding modes occur, the 

systems may have rather good properties such as be 

insensitive to parameter variations and external 

disturbances while reducing orders of the switched 

systems. Over the years, many results on variable structure 

control of uncertain systems without switching have been 

contributed [8, 9]. However, a few results on sliding mode 

variable structure control of switched systems appeared up 

to now [10-15]. 

Work [10] addressed the sliding mode control for 

planar switched systems under an arbitrary switching 

sequence. Only a sliding mode controller was designed in 

there without investigating the construction of the sliding 

surface. The sliding motion of switched systems without 

control input was analyzed in [11] where an approach was 

proposed to estimate the domain in which the sliding 

motion may occur. A variable structure controller with a 

sliding mode sector was presented in [12] for a hybrid 

system. A sliding mode sector is defined as subspace in 

which some norm of state decreases for each subsystem of 

the hybrid system, and a variable structure control law is 

designed to switch among subsystems so as to ensure the 

quadratic stability of the hybrid system. In [13] the 

stabilization of hybrid systems with unstable subsystem 

was solved 

To the authors’ awareness, except for [14-15], on the 

problem of robust ∞H  sliding mode variable structure 

control for switched systems results on simultaneous 

design of sliding surface, switching law and variable 

structure control law have not been reported by now. 

Following the same underlying idea and proving argument 

now we solve the robust ∞H  variable structure control

problem for a class of uncertain switched linear systems. 

A sufficient condition for the existence of a robust ∞H

single sliding surface is derived in terms of Riccati 
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inequality associated with a convex combination of 

switched systems. First a coordinate transformation matrix 

is defined to put the switched system into the regular 

form. A switching law is constructed for the mn −
dimensional equivalent sliding mode dynamic system so 

as to reinforce a single robust ∞H sliding surface such 

that the switched system is robustly stabilizable on the 

sliding surface with disturbance attenuation γ . Variable 

structure controllers are designed to drive the state of the 

switched system on the robust ∞H sliding surface in finite 

time. Further the paper is organized in the standard form.  

2. Problem Formulation and Preliminaries 

The following class of uncertain switched linear system 

),()(

),()()()( 1

tCxtz

tBButxAAtx

=

++∆+= ωσσσ�
  (1) 

is considered. Here, nRtx ∈)( !is the system state, 

},,2,1{),0[:)( lt �=Ξ→∞σ  is the piecewise constant 

switching signal that may depend on t !or! x , m

i Ru ∈ !is 

the control input of the thi − !subsystem, )(tz  is the 

controlled output, ),0[)( 2 ∞∈Ltω  is the external 

disturbance, and B , 1B , C  and Ξ∈iAi ,  are constant 

matrices of appropriate dimensions. The Ξ∈∆ iAi ,  do 

represent the system parameter uncertainties.  

The following relevant assumptions are used: 

A1/. The parameter uncertainties can be composed as 

follows 

Ξ∈Σ=∆ iFtEA ii ,)( , 

where inRE ×∈  and njRF ×∈  are known constant 

matrices, Ξ∈∈Σ × iRt ji

i ,)(  are unknown matrices with 

Lebesgue measurable elements and satisfy 

Ξ∈≤ΣΣ
Τ

iItt ii ,)()( .  

A2/. There exists a known nonnegative constant ϖ

such that ϖω ≤)(t  for all t . 

A3/. The input matrix B  has full rank nm < . 

The single sliding surface is defined as 

0)()( == tSxtζ .                             (2) 

The S  is the single sliding matrix to be determined later. 

The objective of this paper is to design the sliding 

matrix S , the switching law )(tσ , and the variable 

structure controllers Ξ∈iui ,  such that: 

(1). SB  is non-singular; 

(2). The reduced-order equivalent sliding mode dynamics 

restricted to the single sliding surface are robustly 

stabilizable with disturbance attenuation level γ  under the 

designed  switching law );(tσ

(3). the state of the closed-loop system can in a finite time 

enter into the single sliding surface (2) and subsequently 

remains on it. 

 The concept of asymptotic stability with a desired ∞H

disturbance attenuation level given by a real-valued γ . 

Definition 1 [14]. Consider the uncertain switched system 

Cxz

BxAx

=

+= ωσ
�

.                               (3) 

For a given positive constant 0>γ , if there exists a 

switching law )(xσσ =  and a positive definite matrix P , 

such that   

0)( 2 <+++ ΤΤ−ΤΤ xCCPPBBPAPAx γσσ        (4) 

holds, then system (3) is said to be asymptotically stable 

and satisfy ∞H  disturbance attenuation level γ . 

Lemma 1 [15]. Given real matrices 1R  and 2R  with 

appropriate dimensions and an unknown matrix )(tΣ  with 

Lebesgue measurable elements such that Itt ≤ΣΣΤ )()( , 

then we have 

22

1

112121 RRRRRRRR Τ−ΤΤΤΤ +≤Σ+Σ ββ

where 0>β . 

A convex combination of the system (1) is the system  
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Lemma 2. If there exist constant matrices 0>P , 
nmRK ×∈ , constant scalars 0,0 >> λγ  satisfying 

0
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then system (5) is robustly stabilizable with disturbance 

attenuation level γ . 

Proof: Design the state feedback controller by Kxu −=
and let  
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These imply the system (5) is robustly stabilizable with 

disturbance attenuation level γ . 

3. Main Novel Results 

In order to obtain a regular form of system (1), a 

nonsingular matrix and the associated vector ξ  is defined: 

,
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T                                 (7) 
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with mnR −∈1ξ , mR∈2ξ , where B
~

 is an orthogonal 

complement of the matrix B . It is easy to show  

[ ].)()
~~

(
~ 111 −Τ−Τ− = BBBBBBT .               (9) 

By the state transformation )()( tTxt =ξ , the system (1) is 

transformed into the regular form  
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�
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�
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�
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. The system (10) is apparently 

equivalent to the system 
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where  
11

11 )
~~

(
~

)(
~

)
~~

(
~~ −ΤΤ−ΤΤ Σ+= BBBFtEBBBBABA σσσ

�
, 

11

12 )()(
~

)(
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�
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11

21 )
~~

(
~

)()
~~

(
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�
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11

12 )()()( −ΤΤ−ΤΤ Σ+= BBFBtEBBBBABA σσσ

�
. 

Without loss of generality, a sliding surface is supposed 

to be  
)(

21  ,0)( mnnRMMt −×∈=+= ξξζ ,          (12) 

where M  is a matrix to be chosen. Then, ΤΤ += BBMS
~

. 

Substituting 12 ξξ M−=  in to (11) yields the following 

sliding motion:  
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       (13) 

Remark. We can see that the n  dimensional switched 

system (1) reduces m  dimensional on the sliding surface 

(12). Therefore, only the study of the mn −  dimensional 

equivalent sliding mode dynamic system (13) is needed. 

Theorem 1. Suppose that there exist a positive definite 

matrix P , a matrix nmRK ×∈ , constant scalars 

0,0 >> λγ  satisfying inequality (6). Then there exist a 

switching law )(xσ  such that the system (13) is robustly 

stabilizable and satisfies ∞H  disturbance attenuation level 

γ , where M  in (12) is given by 

11111 )
~~

(
~

)(])()[( −ΤΤ−Τ−−ΤΤ−Τ= BBBPBBBBBPBBBBM . In 

this case, the sliding surface is 
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Proof: The system (13) can be equivalently rewritten 
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where 1

11 )
~~

(
~~ˆ −ΤΤ= BBBABA σσ , 1
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Pre- and post-multiply (18) by [ ]1
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where Τ−−= 12

1

221211 PPPPPr . Note that 0>rP  because 

0>P . Therefore, by setting  
11111
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Substituting 1

11 )
~~

(
~~ −ΤΤ= BBBABA , 1

12 )(
~ −ΤΤ= BBBABA

and � =
=

l

i ii AA
1
α  into (6) gives 

02211 <+++ llQQQ ααα � .                       (21) 

Now, the switching law is defined as  

111 minarg)( ξξξσ i
i

QΤ

Ξ∈
= .                         (22) 

By Definition 1, we conclude that system (13) is robustly 

stabilizable with disturbance attenuation level γ  under the 

switching law (22). 

The next is the design of variable structure control laws 

using the reachability condition of sliding surface. 

Theorem 2: Assume that the conditions of Theorem 1 are 

satisfied and the sliding surface of system (1) is given by 

(14). Then under the control laws  

),()
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1
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ζµϖ
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signSB

FxSESBxSASBu
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            (23) 

the state of the system (1) can in finite time enters and 

subsequently remains on the sliding surface, where µ  is a 

positive scalar to adjust the convergent rate. 

Proof: It is straightforward using A2 hence omitted.  

4. An Illustrative Example 

umerical and simulation results are presented. Consider 

the following uncertain switched linear system:
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and the uncertain parameter 
1 2
( ) ( ) [ 1,1]t t ηΣ = Σ = ∈ − . 

We choose the convex combination coefficients 1 2
α α=

0.5=  and the constant 2/1=λ . The initial state is 

[ ]Τ
−= 1210 "x . The state responses of the two subsystems 

alone are shown Figure 1 and Figure 2, respectively;

both subsystems are unstable.  
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Fig. 1 The state response of the subsystem 1 
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Fig. 2 The state response of the subsystem 2 

By solving Riccati inequality (6), one can obtain the 

following solution  

�
�
�

�
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�
�
�

�

�

−

−

=

1459.17391.02403.0

7391.08446.01896.0
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P . 

By means of (17) and  
11111

)
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(
~
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−ΤΤ−Τ−−ΤΤ−Τ= BBBPBBBBBPBBBBM , 
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we get the matrix M : 

].7754.1 ,5983.0[−=M

Therefore, we have 
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2Q
. 

The robust ∞H  single sliding surface is found as  

xSx Τ−−== ]5884.1,4116.0,6786.1[ζ

and the control laws are given by: 
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)4116.06786.34796.7(5.0
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3211
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xx
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++−
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The simulation results for the closed-loop system are shown 

in Figure 4. It can be clearly seen that the closed-loop system of 

the switched system (25) is robust asymptotically stable.
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Fig. 3 The input signal of switched system (25) 
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Fig. 4 The state response of switched system (25) 

5. Conclusions 

The problem of variable structure control for a class of 

switched linear systems with mismatched parametric 

uncertainties and external disturbances solved. The robust 

∞H single sliding surface is constructed based on the 

Riccati inequality associated with the convex combination 

of the switched system such that the motion of the 

switched system along the sliding surface is robustly 

stabilizable with disturbance attenuation γ  under the 

proposed standard switching law.  
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