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Abstract 

 
Maintaining a balance between fidelity, over-smoothing 

and stability in iterative restoration of noisy and blurred 

images is a difficult task that researchers need to handle. 

We proposed a very simple yet effective method to combine 

l1 and l2 norms in order to both reduce over-blurring 

around edges and perform effective denoising within flat 

areas in images simultaneously and generate visually 

pleasing results. Experiments performed with tuned 

parameters for all compared approaches shown that the 

proposed combination is also the fastest to converge. A 

strategy for updating feedback parameters within 

iterations is also experimentally developed and used.   

Keywords : norm, deconvolution, debluring, inverse 

problem 

 
1. Introduction 

 
Recent developments in technology brought digital images 

and image processing into everyday use. On the other hand, 
even in the images obtained using a modern imaging device, 
there are differences from the actual scene. There are many 
reasons for distortion in images and the most common are the 
out of focus blur, motion blur and sensor noise along with the 
defects resulting from lower resolution than the ideal. 
Atmospheric disturbance on the light path is another blur 
source, especially in astronomical imaging. Images recorded 
by image sensors are commonly degraded by a combination of 
such distortions. Many image restoration applications attempt 
to undo these blur degradations and restore the expected 
original image back.  

The main plan in image deblurring is to restore the original 
sharp image from its blurred version or versions without 
intensifying noise or even reducing noise. A sharp estimate 
can be obtained when blurring process or most of it is known. 
Blur process is commonly named as point spread function 
(PSF) as it is the function of distribution image intensity when 
the source is a single bright point within a black background. 
With the assumption of shift-invariant blur the problem 
reduces to that of image deconvolution with a known PSF. In 
the literature, many image debluring approaches assume that 
either the PSF is fully known or calculated prior to debluring 
process. However, in some cases, such as atmospheric 
imaging, it is almost impossible to predict characteristics of 
atmospheric turbulence. In such cases, the mathematical 
model is practically impossible to know a priori. Therefore, it 
is most of the time necessary to estimate PSF and restore the 
image at the same time (blind deconvolution) [1]. 

Ringing (ripple-like artifacts around edges) and noise 
amplification are the most dominant artifacts in image 
deconvolution. Traditional and popular non-blind 
deconvolution methods such as Wiener Filtering [2] and 
Richardson-Lucy deconvolution [3] are still widely used in 

many image restoration methods as they are simple, fast and 
give good results in case of the relatively small blur. On the 
other hand in case of kernel errors and relatively high noise, 
these methods generate unpleasant ringing artifacts around 
strong edges. These and other for image deconvolution 
techniques are much reviewed in the literature[4-5]. 

The blurring is commonly modeled as a convolution of the 
desired image and PSF with additive noise as  

 

 η+= XHY *  (1) 

 
where Y  is a degraded (observed) image, X  is the desired 

image, H  is a shift-invariant blur kernel (PSF) and η  is the 

additive noise. ∗  denotes the convolution operation. 
The most obvious solution to deblurring is convolution 

with inverse filter. Among deblurring methods, non-iterative 
methods such as adaptive unsharp masking [6], use of blur-
space for deblurring [7], frequency-wavelet domain approach  
[8], gradient inverse weighted smoothing [9] can be counted 
in the literature.  

One of the popular approaches to restoration of noisy and 
blurred images is to iteratively update the estimate based on 
some penalties measured over original and estimated images 
and expectations. Recovering the undistorted image using the 
observed image is an ill-conditioned problem as a small 
perturbation of data leads to a great divergence in the solution 
space. Therefore, basic idea of regularization is a solution for 
balancing fidelity and smoothness of the solution[10]. In 
almost all approaches, regularization has been used as a way 
to remedy the state of being ill-conditioned. Regularization is 
used as a function of the penalty term to prevent unwanted 
results. However, the choice of regularization plays a critical 
role in obtaining good results. Regularization term is not easy 
to design and inappropriate choices often lead to serious side 
effects. Penalty term is usually the difference in value between 
neighboring pixels, that is, the transition is penalized by some 
quadratic function [11]. As a result, the restored image is 
overly smooth and edges in the image are the most affected. In 
[12-13] a regularization function is proposed for preserving 
the edges. Jalobeanu et al. [14] have proposed a method that 
employs adaptive regularization term according to local 
characteristics of the image.  

Along with the objective criteria such as signal-to-noise-
ratio (SNR) for comparisons of various algorithms, 
researchers also use visual satisfaction of human observers, 
since SNR is hardly a good measure for degree of blur in 
images. Nevertheless, SNR still is the most widely used 
distortion measure when original images are at hand. Since 
the original image is not at hand, SNR and other measures 
that give closeness to the original can not be calculated. Li et 
al. used the irregularity of the distribution as a measure and 
tried to minimize this for the optimal image[15]. 
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2. Problem formulation  
 

Let the images in interest have nm × pixels, thenY  , X  

and η  are vectors of length mn , and H  is a matrix of 

mnmn × , (1) can be written as follows 
 

 η+= HXY . (2) 

 
using matrix-vector formulation.  One usually attempts 

the reconstruct X  by solving  
 

 
ε≤−

p
HXYtosubject

Xfmimimize )(
. (3) 

 
where ε  is an estimated upper bound on the noise power and 

p  denotes the 
th

p  norm of difference between observed 

image and estimated image. For solving (3), a linear least 
squares problem in the form of  
 

 { }2

2

2

2
)(minargˆ XfHXYX

X

α+−= . (4) 

 
is constructed [16]. 

This is approximately equivalent to several different 
formulations available for optimization problems.  In the 

literature, there is a growing interest in using 1l  norm for 

solving these types of problems. It is claimed that having 

regularization terms in 1l  norm as 

 

 { }1

1

2

2
)(minargˆ XfHXYX

X

α+−= . (5) 

 
prevents smoothing of edges [17]. 

Some researchers [19-20] argued that both outlier 
processing and impulse noise removal are performed better 

when both terms in the minimization are in 1l  form as 
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We propose a robust solution by combining 

1l
and 

2l
 norms 

in both terms of minimization as   
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Applying steepest descent formulation to (7), we get 
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Although, for reasonable parameters that create convex 

systems, it seems that all four optimizations (4,5,6,7) 
approach to acceptable solutions, the difference between them 

is in their speed of convergence and the quality of the 
resulting images after certain number of iterations. 
We used bilaterally filtered current image estimate as the 
regularization term )( k

Xf
 similar to the work of Farsiu et 

al. [20] Selection and update of weight parameters 
1λ , 

2λ , 

k
1α  and k

2α  are described in the following. 

 

3. Parameter Selection  
  Controlling the amounts of residual norm 

2

2
HXY −  and the term 

2

2
)(Xf  representing a priori 

information about the true image, the selection and 
adjustments of regularization parameters and Lagrange 
multipliers in (7) provides a tradeoff between stability and 
fidelity. A choice with relatively large λ  and small α  
usually results in higher protection of details and less 
smoothing. Conversely,  smaller λ  and larger α would 
generate a smoother result with consequently reduced noise. 
Literature is rich of studies on how these parameters should 
be selected. It is intuitive that λ   should be selected as a 
function of the residual norm, α  should be related to the 
smoothing function. In any parameter set choice, it is obvious 
that entire system must satisfy the convexity requirement. In 
our tests, based on [21], the values of 1 and 0.5 are found to 

be adequate for 1λ  and 2λ  respectively. Similarly,  
k
1α  and 

k
2α  are updated using  
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4. Experimental results 

 
Performances of all four optimization approaches are 

recorded for a fair comparison. Algorithms are tested on 
several images that are blurred by a Gaussian PSF with 
standard deviation of 4 and window size of 9x9. Four of those 
images are shown in Fig. 1 since they contain illustrative 
examples of edgy and flat regions. These images are used to 
create three separate sets as with no additional noise, with 
Gaussian noise and with impulse (salt&pepper) noise. Both 
Gaussian and impulsive noises had variances of 10-3. 

 Evaluation of PSNRs for up to 270 iterations is shown in 
Fig. 2 for cameraman image with no additional noise. Types 
1-4 correspond to the algorithms based on equations (4-7) 
respectively. Stopping condition for iteration is normalized 

difference as ε≤k
D  where 

kkkk
XXXD −= +1

 

and ε  is 10-5 for no-noise cases and 5x10-4 for cases with 
additive noise. 

Fig. 2 shows improvements versus iteration number for 
blurred cameraman image without noise. Best results for both 
the rate of convergence and the improvement in PSNR values 
were obtained by the proposed method. Fig. 3 shows 

normalized difference value 
k

D  as an indication of 
convergence 
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Fig.1. Some test images; leaves, Barbara, construction and 
cameraman. Images contain various amount of edges, details 
and flat areas. 
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Fig.2. Cameraman test results show that proposed method is 
the fastest to converge to stopping criterion. Curves are 
monotonic up to 105 iterations for types 3,4 and unstable for 
types 1,2. 
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Fig.3. Convergence curve for proposed method illustrates 
normalized difference between previous and current estimates. 
 

Quantitative comparisons of four tested algorithms using 
PSNR values are given in Tables 1-3 for test images without 
noise, with Gaussian noise and with impulse noise 
respectively. Keeping in mind that the numbers in the tables 
are PSNRs and iteration numbers when the stopping criteria is 
reached (relative difference is less than 10-5 or 10-4). It is 
possible to obtain better results by running the algorithms 

indefinitely. In order to see the behavior of the algorithms at 
higher iteration numbers we let the algorithms run up to 105 
iterations. In that case PSNRs reached 40dB for the 
algorithms given by (3) and (4) (types 3,4) and 30dB for the 
other algorithms (types 1,2). For noisy cases, behavior of 
algorithm types 1 and 2 were unstable after about 40k 
iterations. 
 

Table 1. Test results for images without noise 

 
 Type 

1 
Type 

2 
Type 

3 
Type 

4 
Iter No 169 151 232 188 

Leaves 
PSNR 28.46 27.90 30.01 30.70 
Iter No 138 96 289 278 

Barbara 
PSNR 25.00 24.76 27.97 28.00 
Iter No 198 351 364 211 

building 
PSNR 29.41 28.58 30.36 31.27 
Iter No 195 182 273 227 

cameraman 
PSNR 26.72 26.50 28.99 29.28 

 
Table 2. Test results for images with Gaussian noise 

 
 Type 

1 
Type 

2 
Type 

3 
Type 

4 

Iter No 97 103 58 118 
Leaves 

PSNR 26.01 25.87 25.53 26.31 
Iter No 38 39 26 49 

Barbara 
PSNR 24.07 24.06 23.95 24.26 
Iter No 156 158 151 182 

building 
PSNR 26.17 25.85 25.91 26.12 
Iter No 111 116 125 135 

cameraman 
PSNR 24.36 24.25 23.89 24.78 

 

Table 3. Test results for images with impulse noise 

 
 Type 

1 
Type 

2 
Type 

3 
Type 

4 
Iter No 60 62 33 74 

Leaves 
PSNR 25.93 25.81 25.36 26.15 
Iter No 23 23 19 29 

Barbara 
PSNR 24.08 24.07 23.92 24.22 
Iter No 88 94 112 114 

building 
PSNR 26.20 26.00 25.86 26.31 
Iter No 60 62 32 86 

cameraman 
PSNR 24.23 24.17 23.82 24.53 

 

5. Conclusion  
 

It is experimentally shown that the proposed algorithm 

using a combination of 
1

l and 
2

l  norms for 

deconvolution/deblurring problems is superior to other 

compared algorithms that employ only 
1

l and 
2

l  terms. By 

using 
2

l  terms we improved the robustness against noise and 

by inserting 
1

l terms we enhanced behavior around the edges 

and prevented over-smoothing. The convergence rate of the 
proposed algorithm is also found to be better than others. In 
this experimental study we assumed that the blur operator is 
known a priori. One of the future works would be, starting 
with an initial operator estimate, improve the operator and 
enhance feedback parameters conveniently. 
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