
SRT FAST DIVISION ALGORITHMS:
SIMULATION AND PERFORMANCE EVALUATION

Selvihan Nazlı Yavuzer Ahmet Sertbaş

e-mail: syavuzer@bahcesehir.edu.tr e-mail: asertbas@istanbul.edu.tr
Istanbul University, Faculty of Engineering, Department of Electrical & Electronics Engineering, 34850, Avcılar,

Istanbul, Turkey

Key words: Division, , SRT algorithms, high-radix division, performance analysis

ABSTRACT
SRT division algorithms are common in modern
floating-point units. These algorithms process more
quotient bits in each step to provide a higher division
performance. This study evaluates SRT algorithms
(SRT-2, SRT-4, SRT-8 and SRT-16) based on memory
and process time requirements. For this purpose, a C#
algorithm simulator for SRT algorithms have been
implemented and relative algorithm analysis have
been performed based on memory and time criteria.

I. INTRODUCTION
Fast division unit design is important in high-speed
computing as division –among computer-based arithmetic
operations- is the most complex operation with long delay
periods. On the other hand, with the IEEE floating point
standard that requires exact division, division algorithm
design suitable for large micro-processing circuits has
been a focus. Various algorithms have been developed
based on quadratic and linear approximation algorithms.
A significant approximation algorithm is Newton-
Raphson [1, 2] method for the first group, while SRT [3]
method is common as the linear approximation algorithm.

Most implementations for the division are based on the
SRT algorithm that uses a recurrence producing one
quotient digit for each step. The speed of such SRT-based
dividers is mainly determined by the complexity of the
quotient-digit selection. To speed up the division process,
one may reduce the number of iteration steps by
increasing the radix Q of the process. Selecting β=2m
allows the generation of m quotient bits at each step and
the number of steps can be reduced to (n/m). However,
the complexity of the quotient-digit selection and
remainder updating increases for high radices, eliminating
the advantages of the reduction in number of iterations
[2]. Different methods have been developed to ease the
process of division bit selection [4-7]. The simplest
method for bit selection is involves the use of a look-up
table called quotient-bit selection table. In this method,
partial remainder is compared to table values to reach a
result. However, as radix increases, the look-up table size
also increase which also increases the bit-selection cost.

Since SRT division was proposed, there has been much
discussion on the required precision of the truncated

partial remainder and divisor for algorithm convergence.
There is no general theory on the evaluation of the degree
of truncation tolerable in SRT division and so no means of
comparing schemes employing different radices [8].

II. SRT DIVISION ALGORTIHMS
The SRT class of division algorithms is characterized by
the use of redundant representations for the quotient, and
most often as well for the remainder. Since the invention
in the late fifties simultaneously by Sweeney, Robertson
and Tocher [9] and the introduction of the use of
redundant representations for the remainders by D.E.
Atkins [1], these methods have been extensively studied
and implemented in processors.

Division operation is simply defined as

X = q.d + rem (1)

where x is dividend, d is divisor, q quotient, rem (if any)
remainder and

|rem| < |d| . ulp and sign(rem) = sign(x) (2)

Item length for quotient is determined using ulp (unit in
the last place) and following criteria;

• If ulp=1 then quotient is an integer
• If ulp = r – n, where n is the number of quotient

bits an r is the radix.

The basic idea behind SRT division is to speed-up the
digit selection process using limited number of
comparisons based on a few most significant bits of d and
w[j]. In SRT iteration method, partial remainder is
calculated as shown in (3):

w[j+1] ← r . w[j] – q j+1 . d (3)

where w[j] represents the partial remainder after j iteration
steps starting with w[0] = x. Quotient at jth step is shown
in (4)

irqj

i
i −∑ =
.

1
(4) q[j] =

mailto:syavuzer@bahcesehir.edu.tr
mailto:asertbas@istanbul.edu.tr

In each iteration step, the purpose is to determine the new
quotient bit qj+1. In hardware implementations of SRT
division, selection is done by scanning a reference table
using a few most significant bits of quotient (d) and the
partial remainder (w[j]). In the case of a software
implementation, tables for quotient digit selection can not
be used in order to avoid cache misses [10].

Robertson diagram in Figure 1 shows the remainder vs.
quotient bit for SRT division.

Figure 1. Robertson diagram for SRT division

SRT-2 DIVISION ALGORITHM
SRT-2 division equation for (β=2) is as shown in (5).

(5)

At first iteration step where w[0] = x, the quotient should
be shifted right by 1 bit providing (2). Figure 2 shows the
Robertson diagram for SRT-2 division quotient bit
selection.

Figure 1. Robertson diagram for Radix-2

SRT-4 DIVISION ALGORITHM
Iteration equation becomes (6) with radix=4.

w[j+1] ← 4 . w[j] – q j+1 x d (6)

And quotient bit is selected among {-2, -1, 0, 1, 2}.

Due to the redundancy in the quotient digit set, there are
overlaps between digit selection regions in the Robertson
diagram shown in Figure 1, allowing a choice between
two digit values. Hence, even if the information on the

remainder and divisor is missing, it is possible to select a
quotient bit among the alternatives. By allowing such a
relaxed quotient digit determination, it is possible to base
the quotient digit selection on leading digits of the divisor
and of the remainder in a redundant representation. Figure
3 show minimally redundant Robertson diagram for radix-
4.

Figure 2. Minimally redundant Robertson diagram for
radix-4

SRT-8 DIVISION ALGORITHM
When β=8, recursive SRT equation for remainder at step
j+1 is calculated using (7) is used to compute the
remainder at j+1, while the quotient bit is selected from {-
α, …, -1, 0, 1, …, α} and α in the range, [(β-1) / 2] ≤ α ≤
(β-1).

w[j+1] ← 8 . w[j] – q j+1 x d (7)

SRT-16 DIVISION ALGORITHM
To speedup division operations, number of iteration steps
can be reduced by using a higher radix. Increasing the
radix of SRT division to r=2m allows the generation of m
quotient bits every step [11]. In this manner, the number
of required iterations reduces to [n/m], where n is the
width of the input operands in bits. However, high-radix
division increases the complexity of quotient bit selection
and remainder updates, which eliminates the advantage of
reduced number of iteration steps. To eliminate this
problem, pre-scaling and prediction methods are used.
With pre-scaling both dividend and divisor are scaled
preserving the quotient. Prediction, involves the selection
of new quotient digit is overlapped with the update of the
remainder [12].
In SRT-16, quotient bit is selected from the set {-α,…, -1,
0, 1, …, α}, while for α, 15/2 ≤ α≤15 as β = 16. Iteration
equation with β =16 becomes (8).

w[j+1] ← 16 . w[j] – q j+1 x d (8)

3. RESULTS
This paper examines the performance changes in division
algorithms based radix selection. For this purpose, SRT-2,
SRT-4, SRT-8 and SRT-16 division algorithm simulations
have been implemented using C3 programming language

(Figure 4). Process time and memory requirements are
selected criteria to evaluate performance differences.

Figure 4. SRT Simulator Application

Although SRT-2 algorithm requires less memory space as
no loop-up table is needed, the increased number of
iteration steps results in a longer execution time when
compared to division with 4, 8, 16 radices (Figure 5).

Divison Length (Bit) / Time

0

10

20

30

40

50

60

70

80

32 64 96 128 160 192 224 256
Bit

Ti
m

e

SRT2

SRT4

SRT8

SRT16

Figure 5. Bit length / time for SRT algorithms

On the other hand, for high radix division algorithms, the
size of comparison tables and search cost in reference
tables evidently increases as Shown in Figure 6. In Figure
7, process time and memory requirement measures are
combined to form an AxT2 graph which can be used as a
broad performance criterion.

Thus, it is possible to use higher radix to obtain a higher-
performance algorithm. However, hardware realization
costs for this performance gain with higher memory
requirements can be assessed through an analysis based
on VHDL hardware simulation.

Figure 6. Bit length / memory graph for SRT algorithms

A.T2 (kbit.ns2)

0.0

0.2

0.4

0.6

0.8

1.0

32 64 96 128 160 192 224 256
Bit

(N
or

m
.)

SRT2

SRT4

SRT8

SRT16

Figure 7. SRT algorithms performance graph (AT2 - Bit
length)

REFERENCES
1. M. D. Ercegovac and T. Lang. Division and Square

Root: Digit-Recurrence Algorithms and
Implementations. Kluwer Academic Publishers,
1994.

2. I. Koren. , ‘Computer arithmetic algorithms' A.K.
Peters Ltd., ISBN 1-56881-160-8., 2002.

3. J. E. Robertson., A new class of digital division
methods. IRE Transactions on Electronic Computers,
EC-7(3):88--92, September 1958.

4. N. Burgess, ‘A Fast Division Algorithm for VLSI’,
Proceedings of the 1991 IEEE International
Conference on Computer Design on VLSI in
Computer & Processors, p. 560 – 563, ISBN:0-8186-
2270-9

5. M.D. Ercegovac, T. Lang, ‘Fast Radix-2 Division
With Quotient-Digit Prediction’, Journal of VLSI
Signal Processing, 1, 1989, pp169-180.

6. ‘IEEE Standard for Floating Point Arithmetic’, IEEE
Standard 754, IEEE Computer Society, 1985.

7. K. Hwang, Computer Arithmetic: Principles and
Design, J. Wiley and Sons, 1979.

8. T. Williams, N. Burgess, ‘Choices of Operand
Truncation in the SRT Division Algorithm’, IEEE
Transactions on Computers, Vol. 44 , Issue 7, July
1995, p. 933 – 938, ISSN:0018-9340

9. P. Kernerup, ‘Digit Selection for SRT Division and
Square Root’, IEEE Transactions on Computers, Vol.
54, Issue 3, March 2005, p. 294 – 303, 2005,
ISSN:0018-9340

10. C. Jeannerod, S. K. Raina and A. Tisserand, ‘High-
radix floating-point division algorithms for embedded
VLIW integer processors’, 17th IMACS World
Congress, Paris, July 2005.

11. T. Pan, H. Kay, Y. Chun, and C. Wey, ‘High-Radix
SRT Division with Speculation of Quotient Digits’,
Proceedings of the 1995 International Conference on
Computer Design: VLSI in Computers and
Processors, p. 479, 1995, ISBN:0-8186-7165-3

12. C.-L.Wey and C.-P.Wang, ‘Design of a fast radix-4
SRT divider and its VLSI implementation’,
Computers and Digital Techniques, IEE Proceedings,
Jul 1999, Vol. 146, Issue. 4, p. 205-210

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=17453&isYear=1999

	Selvihan Nazlı Yavuzer Ahmet Sertbaş
	Istanbul University, Faculty of Engineering, Department of Electrical & Electronics Engineering, 34850, Avcılar, Istanbul, Turkey
	Key words: Division, , SRT algorithms, high-radix division, performance analysis

	
	
	I. INTRODUCTION
	II. SRT DIVISION ALGORTIHMS
	SRT-2 DIVISION ALGORITHM
	SRT-4 DIVISION ALGORITHM
	SRT-8 DIVISION ALGORITHM
	
	SRT-16 DIVISION ALGORITHM
	3. RESULTS
	REFERENCES

