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ABSTRACT 
SRT division algorithms are common in modern 
floating-point units. These algorithms process more 
quotient bits in each step to provide a higher division 
performance. This study evaluates SRT algorithms 
(SRT-2, SRT-4, SRT-8 and SRT-16) based on memory 
and process time requirements. For this purpose, a C# 
algorithm simulator for SRT algorithms have been 
implemented and relative algorithm analysis have 
been performed based on memory and time criteria. 
 

I. INTRODUCTION 
Fast division unit design is important in high-speed 
computing as division –among computer-based arithmetic 
operations- is the most complex operation with long delay 
periods. On the other hand, with the IEEE floating point 
standard that requires exact division, division algorithm 
design suitable for large micro-processing circuits has 
been a focus. Various algorithms have been developed 
based on quadratic and linear approximation algorithms. 
A significant approximation algorithm is Newton-
Raphson [1, 2] method for the first group, while SRT [3] 
method is common as the linear approximation algorithm. 
 
Most implementations for the division are based on the 
SRT algorithm that uses a recurrence producing one 
quotient digit for each step. The speed of such SRT-based 
dividers is mainly determined by the complexity of the 
quotient-digit selection. To speed up the division process, 
one may reduce the number of iteration steps by 
increasing the radix Q of the process. Selecting β=2m 
allows the generation of m quotient bits at each step and 
the number of steps can be reduced to (n/m). However, 
the complexity of the quotient-digit selection and 
remainder updating increases for high radices, eliminating 
the advantages of the reduction in number of iterations 
[2]. Different methods have been developed to ease the 
process of division bit selection [4-7]. The simplest 
method for bit selection is involves the use of a look-up 
table called quotient-bit selection table. In this method, 
partial remainder is compared to table values to reach a 
result. However, as radix increases, the look-up table size 
also increase which also increases the bit-selection cost.  
 
Since SRT division was proposed, there has been much 
discussion on the required precision of the truncated 

partial remainder and divisor for algorithm convergence. 
There is no general theory on the evaluation of the degree 
of truncation tolerable in SRT division and so no means of 
comparing schemes employing different radices [8].  
 

II. SRT DIVISION ALGORTIHMS 
The SRT class of division algorithms is characterized by 
the use of redundant representations for the quotient, and 
most often as well for the remainder. Since the invention 
in the late fifties simultaneously by Sweeney, Robertson 
and Tocher [9] and the introduction of the use of 
redundant representations for the remainders by D.E. 
Atkins [1], these methods have been extensively studied 
and implemented in processors. 
 
Division operation is simply defined as 
 

X = q.d + rem (1) 
 
where x is dividend, d is divisor, q quotient, rem (if any) 
remainder and  
 

|rem| < |d| . ulp  and sign(rem) = sign(x) (2) 
 
Item length for quotient is determined using ulp (unit in 
the last place) and following criteria; 

• If ulp=1 then quotient is an integer 
• If ulp = r – n, where n is the number of quotient 

bits an r is the radix. 
 
The basic idea behind SRT division is to speed-up the 
digit selection process using limited number of 
comparisons based on a few most significant bits of d and 
w[j]. In SRT iteration method, partial remainder is 
calculated as shown in (3): 
 

w[j+1]  ← r . w[j] – q j+1 . d (3) 
 
where w[j] represents the partial remainder after j iteration 
steps starting with w[0] = x. Quotient at  jth step is shown 
in (4)  
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In each iteration step, the purpose is to determine the new 
quotient bit qj+1. In hardware implementations of SRT 
division, selection is done by scanning a reference table  
using a few most significant bits of quotient (d) and the 
partial remainder (w[j]). In the case of a software 
implementation, tables for quotient digit selection can not 
be used in order to avoid cache misses [10]. 
 
Robertson diagram in Figure 1 shows the remainder vs. 
quotient bit for SRT division. 
 

 
 
Figure 1. Robertson diagram for SRT division 
 

SRT-2  DIVISION  ALGORITHM 
SRT-2 division equation for (β=2) is as shown in (5). 
 

 

(5) 

 
At first iteration step where w[0] = x, the quotient should 
be shifted right by 1 bit providing (2). Figure 2 shows the 
Robertson diagram for SRT-2 division quotient bit 
selection. 

 
Figure 1. Robertson diagram for Radix-2 
 

SRT-4  DIVISION  ALGORITHM 
Iteration equation becomes (6) with radix=4. 
 

w[j+1]  ← 4 . w[j] – q j+1 x d (6) 
 
And quotient bit is selected among {-2, -1, 0, 1, 2}. 
 
Due to the redundancy in the quotient digit set, there are 
overlaps between digit selection regions in the Robertson 
diagram shown in Figure 1, allowing a choice between 
two digit values. Hence, even if the information on the 

remainder and divisor is missing, it is possible to select a 
quotient bit among the alternatives. By allowing such a 
relaxed quotient digit determination, it is possible to base 
the quotient digit selection on leading digits of the divisor 
and of the remainder in a redundant representation. Figure 
3 show minimally redundant Robertson diagram for radix-
4. 
 

 
 
Figure 2. Minimally redundant Robertson diagram for 
radix-4 
 
 

SRT-8 DIVISION  ALGORITHM 
When β=8, recursive SRT equation for remainder at step 
j+1 is calculated using (7) is used to compute the 
remainder at j+1, while the quotient bit is selected from {-
α, …, -1, 0, 1, …, α} and α in the range, [(β-1) / 2] ≤ α ≤ 
(β-1). 
 

w[j+1]  ← 8 . w[j] – q j+1 x d (7) 
 

SRT-16 DIVISION  ALGORITHM 
To speedup division operations, number of iteration steps 
can be reduced by using a higher radix. Increasing the 
radix of SRT division to r=2m allows the generation of m 
quotient bits every step [11]. In this manner, the number 
of required iterations reduces to [n/m], where n is the 
width of the input operands in bits. However, high-radix 
division increases the complexity of quotient bit selection 
and remainder updates, which eliminates the advantage of 
reduced number of iteration steps. To eliminate this 
problem, pre-scaling and prediction methods are used. 
With pre-scaling both dividend and divisor are scaled 
preserving the quotient. Prediction, involves the selection 
of new quotient digit is overlapped with the update of the 
remainder [12]. 
In SRT-16, quotient bit is selected from the set {-α,…, -1, 
0, 1, …, α}, while for α, 15/2 ≤ α≤15 as β = 16. Iteration 
equation with β =16 becomes (8). 
 

w[j+1]  ← 16 . w[j] – q j+1 x d (8) 
 

3. RESULTS 
This paper examines the performance changes in division 
algorithms based radix selection. For this purpose, SRT-2, 
SRT-4, SRT-8 and SRT-16 division algorithm simulations 
have been implemented using C3 programming language 



(Figure 4).  Process time and memory requirements are 
selected criteria to evaluate performance differences. 
 

 
 
Figure 4.  SRT Simulator Application 
 
Although SRT-2 algorithm requires less memory space as 
no loop-up table is needed, the increased number of 
iteration steps results in a longer execution time when 
compared to division with 4, 8, 16 radices (Figure 5). 
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Figure 5.  Bit length / time for SRT algorithms 
 
On the other hand, for high radix division algorithms, the 
size of comparison tables and search cost in reference 
tables evidently increases as Shown in Figure 6. In Figure 
7, process time and memory requirement measures are 
combined to form an AxT2 graph which can be used as a 
broad performance criterion.  
 
Thus, it is possible to use higher radix to obtain a higher-
performance algorithm. However, hardware realization 
costs for this performance gain with higher memory 
requirements can be assessed through an analysis based 
on VHDL hardware simulation.  
 
 

 
 
Figure 6.  Bit length / memory graph for SRT algorithms 
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Figure 7.   SRT algorithms performance graph (AT2 - Bit 
length) 
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