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Abstract 
 
The paper presents the cooperative output regulation for 
heterogeneous linear multi-agent systems (MAS) with fixed 
and switching topologies. In this approach, each agent 
dynamics are higher-order with different constrained and 
state dimension. The leader system of considered 
heterogeneous agents provides tracking signal and 
disturbance. A systematic distributed design approach for 
output regulation problem is proposed via measurement 
output feedback. Under this approach, it is demonstrated 
that the heterogeneous multi agent system can reach the 
output regulation in finite time. For immeasurable internal 
states of agents and relative states between agent and its 
neighbors, Luenberger observers and dynamic 
compensators are employed. The theoretical results are 
verified through numerical simulations for a multi-agent 
system of four airplanes. 
 

1. Introduction 
 
Networked multi-agent system (MAS) in control theory has 
attracted extensive attention of researchers. MAS is very 
effective model to describe dynamic agents which can exchange 
information through communication. In recent years, more 
research has focused on the cooperative control of MAS because 
of broad applications in many practical problems such as flying 
control of UAV [1], formation of mobile robots [2], attitude 
synchronization of spacecraft formation [3] and its advantages 
such as scalability and strong robustness. According to different 
control objectives problems of flocking, consensus, formation 
and tracking have been widely studied. 
Consensus problem is to follow a common reference signal 
generated by the agents themselves and it is the most relevant 
topic to cooperative output regulation. In [4,5] basic problem 
frame work formed for consensus problem. Consensus problem 
for first and second order integrator was investigated in [6, 7, 
8].Adaptive consensus problem for linear and nonlinear MAS 
studied in [9, 10]. 
In modern control theory output regulation of MAS has been 
largely studied for tracking and disturbance rejection problems. 
In consensus problem most of the time homogeneous agents 
without any leader is considered but output regulation overcome 
this drawback. In [11] author discussed Full information 
feedback control and measurement output feedback control for 
cooperative linear output regulation of homogenous MAS. Full 
information heterogeneous output regulation problem discussed 
in [12]. Cooperative output regulation of heterogeneous MAS 
with internal model principal presented in [13]. Cooperative 
output regulation of MAS under switching topology proposed in 
[14]. 

In this paper we will discuss the linear output regulation 
problem with higher-order heterogeneous MAS with different 
switching topologies. The novelty of this paper is that the 
assumptions of stable nodes and fixed undirected topology.Also 
the agents have higher order dynamics compared to the double 
integrator system regulation considered in the literature. Another 
feature of the approach is that all subsystems have different 
constraints with different number of states. 
An outline of this paper is as follows. In section 2, some 
preliminaries related to graph theory and problem statement are 
introduced .In section 3, we give detailed description of output 
regulation of MAS with measurement output feedback. In 
section 4, Numerical example is provided to demonstrate our 
result. In section 5, we present our conclusion. 
Following notations will be used in this paper.  be the set of 
real numbers.  is a matrix space of dimension  .  0  is a matrix with zero elements and m rows and n colums. 1 is a column vector with all the  elements 1.  represent the 
kronecker product and its properties are discussed in 
[15].  describe the switching signal which is piecewise 
constant and : 0, ∞ 1,2, … ,  with switching 
instants 0 ,  ,  , … where switching index set is  and  is a nonnegative integer. We assume that switching instants of 
signal  satisfy    0 for any 0 and for 
constant  , and the constant  is called dwell time. 

 
2. Preliminaries 

 
2.1 Graph theory 
 
In this section, preliminary knowledge is introduced. 
First, we introduce some basic terminologies and concepts 

from graph theory. The relationship among a system of agents 
can be described by a graph. A digraph or directed graph is 
denoted as ,   where  node set is  , … ,  
and             is the set of edges. If graph   is directed 
and  ,  denotes an edge from parent node    to child node   
then  is called neighbor of   . For an undirected graph , ,  ,  and   ,  are neighbors.  | ,      
denotes the neighbor set of node . A path in directed graph  is 
a finite sequence of edges in the form , , , , … , , , with distinct edges, and we say 
that node  is reachable from node . A globally reachable 
node  of   is reachable from every other node of  . A 
directed graph ,  is a subgraph of  ,  if  

 and .Given a set of    directed 
graphs where , , 1, … , , the directed graph ,  where  is union of directed graph  , 
denoted by  .The nonnegative and weighted 
adjacency matrix of a directed graph   is denoted as  
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 ,where 0  0  (if edge start from 
agent  and end at agent   then  0 ). In the case of 
undirected graph , .Its Degree matrix  , … ,  is a matrix with only diagonal non-
zero elements, where diagonal elements are  Σ  for 1,2 … , .The Laplacian matrix of a directed graph  is 
defined as .Set  Δ ,, . . , , which is 
also a diagonal matrix with  dimension. Define  Δ  , which tells us about the connectivity of whole directed 
graph  . A time-varying directed graph can be defined as  ,  where for all  0,  edges   . 
Besides this, we have an adjacency matrix                                     

 satisfying, for all 0, 0 
wher 1,2, ,3, … ,  and 0,  , 1,2,3, … , . 
A dynamic directed graph  can be defined such that  
is the nonnegative matrix of directed graph .We can say 

 is the directed graph of . 
 
2.2 Problem statement 
 
Consider the cooperative output regulation of heterogeneous 

linear MAS with  nodes, which is expected to reject the 
disturbance  while tracking a common reference   at different 
nodes. The nodes dynamics are described by following 
equations. 

                       (1)                1, … ,  
 

Where   is the state vector ,   is the 
measurement output,    is the error output, and     is the  subsystems control input and , ,  , , , , ,  are the matrices of appropriate 
dimension.  is the reference and disturbance signal 
which is generated by  following differential equations 
respectively :    ,    0     ,       ,    0  
Where   and  . Lumping the disturbance    and 
reference input    together generates the exogenous signal of 
node  denoted by    , which is governed by  
 
                                                                           (2) 

 
Where                            is appropriate dimension matrix. 

Equation (2) is called exosystem (or leader system) and equation 
(1) describes the dynamics of agents (or follower system) .We 
can represent a switching adjacency matrix ,   , 0,1, … , . If the control input of agent    
can access the reference signal    of exosystem then 0,   1, …  and remaining elements of  are 
satisfying 0  for any     0  , 0,1, … , .Let ,  be a dynamic directed graph of  .Then 
node set 0,1, … ,  with 0 associated to the exosystem and  
all other nodes associated to N subsystems, and  ,   if 
and only if 0 at time instant . 
A dynamic compensator having states , 1, … ,  is 
described by following equation. 

 ∑    
                      (3) 

                                                                             
Where   is an arbitrary constant. 0 if and only if node 
 access the exogenous signal otherwise 0.Equation (3) 

also tells us about the dependency of   and  on each other,   
,we call equation (3) a distributed observer . 

We will give a dynamic measurement output feedback control as 
 

    

     (4) 
 

Where    ,   are controller gains 
and    is observer gain.The follower system (1), 
feedback control law (4) with exogenous system (2) can be put 
into following closed loop system form: 
 , ,    , 0    , ,                                       (5) 

 
Detail of ,  , ,  , ,  and ,  matrices which 
expressed in above equation (5) is shown in theorem 1.  
Now we are ready to describe the cooperative output regulation 
of heterogeneous MAS. 
Definition 1: Given the MAS (1), the exosystem (2), and 
corresponding  digraph, find the measurement output 
feedback control law (4) such that the following properties hold. 

(1) Origin of closed loop system  is exponentially stable 
when 0. 

(2) For   0  , 0 ,  0   lim 0,       1,2 … ,  
Where 0  , 0 ,  0  are initial conditions. 
Let us make few assumptions related to classical linear output 
regulation problem and regulation problem of switched systems. 
A 1:  All the eigenvalues of   do not have negative real part. 
A 2: The pairs  ,  , 1,2 … ,   are stabilizable. 
A 3: The pairs  ,  , 1,2 … ,  are detectable. 
A 4: The linear matrix equations  
 
         
            0      ,  1,2 … ,                 (6) 
 
Where  and  are the solution of linear matrix equation. 
A 5: There exists a subsequence { } of : 0,1, …  with       for nonnegative  in such a way that leader 
node or exosystem in the union graph  can access 
all other nodes. 
Remark 1: Assumptions from A1 to A4 are standard 
assumptions and also used by [12], [14].Our results will discuss 
the directed graph with fixed and variable switching topologies 
and follower nodes are higher order so we need extra 
assumption A 5  for switching network topologies. Assumptions 
similar to A 5 are also discussed in [14] 
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3. Solvability of the prob
 
In this section, we will discuss two lemm
switched systems. 
Lemma  (Huang [14]) Suppose that origin
closed-loop linear switched system (5) 
  ,  
 
is exponentially stable. If, the following equ
a constant matrix  for all positive values o
 , ,

   0 , ,
 
Then   lim 0  
 
Remark 2: This Lemma 1 also discussed in 
homogeneous agents. 
Let Δ  , … ,  with 
partitioned as  

Where 0 for all 1, … ,  if ,Δ 1 1   Since 1
 
Lemma  (Huang [14]) Under A 1 and A 5 
switched system 
 ζξ 0

 
Of equation (9) is exponentially stable with 
and random positive constant  .  
Remark 3: When   1  then switching ne
becomes fixed network topology .In this spe

  are specialized to the following. 
A 6:      ∆ ∆ 0    
To remove dependency of Assumption A 1 f
we can sharpen the Lemma   by having suf
positive constant   . 
Corollary  (Huang [14]), Under A 6, the o
system 
 ζξ  0

 
is Hurwitz with a Hurwitz matrix M and ran
constant  . 
Under A 2, there exists , 1, … , , suc
Hurwitz. Let  be as follows: 
 1  ,   1,2 …
 
        are the solution of equation (6)
Let we have following diagonal matrices: ℓ  , … ,  , ℓ  ℓ  , … ,  , ℓ  ℓ  , … ,  , ℓ  ℓ  , … ,  , 1 ℓ  

blem 

mas related to linear 

n of unforced part of          

uations satisfies with 
of time. 

 
     (7) 

    (8) 

(Y. Su [16]) for 0,   then   

 0  .then  1 0 

the origin of linear 

   (9) 

a Hurwitz matrix M 

etwork topology 
ecial case   A 5 and 
   

for the case 1 , 
fficiently large 

rigin of the linear 

   

ndom large positive 

ch that , is 

… ,                    (10) 

).  , … , , , … , , , … , , 11, … , 1N , 

ℓ  , … ,  ,  2
 
Then equation (6) and equation (10
 

                            0
 
Theorem   : According to Definit
A 5 cooperative output regulation 
agent problem can be solved by ou
if origin of closed loop system (5)  such that ,is Hurwi
A 3 ,there exits  , 1, … ,  suc
Where   is random nonnegative co
Proof: The  agent closed loop sy
     
 
                                                       
 
Let   , … , ,    , … , … , ,  , … ,    
The equation (12) can be written in

             
                                  
 
 With               and         ,

0 0
,     ,  ,

  ,       Let          

                 
By row and column operation on M
first property in Definition 1 holds
property:  
Let  , ,   then, by (11

, ,  
And             , , 0

 is the solution of (7) .By Lemma
 
Remark  4: First select  in su

,are in left half plane (
the linear matrix equation (6) for 

ℓ  21, … , 2N , 
0) imply 

 
                   (11) 

tion 1 and assumptions A 1 to  
of  heterogeneous      multi-

utput feedback control law (4) 
is exponentially stable, where 

itz.  defined in (10).Under 
ch that  is Hurwitz . 
onstant. 
ystem under control law (4) is     

 

  ,             
                                         (12) … , ,       , … ,   , … , ,    ,         1      

n the form of (5) 

     ,      1     
   (13) 

                         

   

   

   

M we get Hurwitz matrix so 
. For verification of second 

1) 

     0 
a    lim 0. 

ch a way that eigenvalues of 
(or Hurwitz) .Secondly, solve 
the solution of   ,  after 
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that solve equation (10) for  . Lastly, find a gain matrix  such that  is Hurwitz and also select  having 
arbitrary constant. 
 

4. Simulation results 
 

Taking the aircraft model given in [17] as an example. Consider 
a team of three aircrafts linear models named B747, Jetstar and 
MuPAL-α to track a given reference signal. First there is an 
exosystem (2) generating the disturbance and reference signals. 
Exosystem states are , , , , , where , ,  , are the reference signal states and ,  are the 
side way velocity and roll angle disturbances respectively. 
Hence the exosystem (2) is 

  

0 0 0 0 00 0 2 9 0 00 1 2 0 0 00 0 0 0 10 0 0 1 0
 

 
A constant sideway velocity  Can represent with the first state 
of exosystem.  ,  are sinusoidal roll angle states, and ,  are represent sinusoidal sideway velocity/roll angle 
disturbance. Then for 1, … ,4  (1) is used to describe the 
lateral-direction motion of  aircrafts, whose input, outputs,  
and states  are set as  , ,  , ,and       ,  , , ,wher  is sideway velocity ,   , is roll 
rate , , is roll angle,  , is yaw rate ,  , is aileron deflection 
command and  is rudder deflection command.  
Case 1. Fixed network topology is shown in Fig .1. Leader 
node (exosystem) is represented with 0 and all other nodes are 
followers. In Fig.2 and Fig.3 fixed network topology results are 
shown.  

 
Fig.1. Fixed network topology (0 is leader agent) 

 
The models of aircrafts can be represented by (1). 
(Linear model of B747) 

  

0.0890 9.9566 9.6989 66.62090.0197 0.9750 0 0.32700 1 0 0.14950.0025 0.1660 0 0.2170  

 

  0 0.99690.2270 0.06360 00.0264 0.1510   ,    1 0 0 00 0 1 0  

(Linear model of MuPAL-α) 
 0.1781 6.0791 9.7633 65.6230 0 2.89000.0575 3.8100 0 1.3430 10.7500 1.18700 1 0 0.0944 0 00.0253 0.0628 0 0.4750 0.3450 2.22000 0 0 0 11.1111 00 0 0 0 0 11.1111

 

 

 

0 2.890010.7500 1.18700 00.3450 2.220022.2222 00 22.2222
   ,     1 0 0 0 0 00 0 1 0 0 0  

(Linear model of  Jetstar ) 

 

0.1750 9.5040 9.7828 135.91370.0387 1.3000 0 0.18100 1 0 0.06990.0242 0.1640 0 0.2610  

 

 
0 5.77683.1400 1.61000 00.7670 1.8100        ,           1 0 0 00 0 1 0  

Other matrices are valued as: 
 1 0 0 00 0 1 0   ,  1 0 0 0 0 00 0 1 0 0 0  

 

  

0 0 0 5 00 0 0 0 00 0 0 0 100 0 0 0 0  ,   

0 0 0 10 00 0 0 0 00 0 0 0 100 0 0 0 00 0 0 0 00 0 0 0 0
 

 

 

0 0 0 25 00 0 0 0 00 0 0 0 500 0 0 0 0      ,  0   , 0 

 
 1 0 0 0 0 00 0 1 0 0 0      ,     1, … 4           ,          1 

By solving regulator equation (6), such that  
 

 
1 0 0 0 00.0001 0.4982 0.0050 0.0182 49.80860 0 1 0 00.0008 0.0264 0.0722 0.2605 2.7379  

 

 0.0070 0.3057 0.0486 21.2621 29.44590.0105 0.1984 0.0139 10.4867 17.5297  
 

 

1.0000 0 0 0 00.0002 0.4960 0.0138 0.0119  9.91730 0 1 0 00.0022 0.0423 0.1465 0.1261 0.87660.0089 0.3552 0.0692 2.5429 6.79540.0223 0.1696  0.0404 1.3048 1.7967
 

 

 0.0045 0.1760 0.0381 1.5773 3.28330.0112 0.0857 0.0185 0.7333 0.8397  
 

 

1.0000 0 0 0 00.0001 0.4906 0.0208 0.0074 9.79280 0 1.0000 0 0 0.0008 0.0627 0.1393 0.0494 1.3862  

 

 0.0797 2.1705 0.7118 43.4961 41.54470.0316 0.7113 0.2095 1.6386  5.1669  

Controller gains  ,  and observer gains  are 
 0.0603 3.1329 2.9505 2.37141.8951 7.6450 6.2055 42.3486  

 
 0.1424 3.5589 1.8430 43.3557 68.93691.9634 0.3851 0.0640 3.7883 10.9941  

 
 0.6317 1.8551 3.7856 11.1149 2.8502 1.67211.6257 2.3377 4.3630 31.5838 2.0016 5.7057  

 
 0.7238 1.3551 1.8284 5.2195 28.30151.8523 0.5178 0.6850 7.0990 1.9908  

 

 0.5656 2.0465 2.2831 4.94421.8777 0.7789 0.6502 17.0345  
 

 0.5768 1.1946 1.8670 22.5874 117.84181.9025 0.2601 0.5700 6.0349 25.3734  
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22.6999 0.40710.2810 0.48310.4071 2.44461.8483 0.3508  ,   

21.5673 0.36130.2035 0.18450.3613 2.17001.7786 0.2679 0.0236 0.0050 0.0523 0.0004
  

 
 

31.8164 0.21730.1120 0.31210.2173 2.29031.8722 0.1590  

Fig.2. Trajectories of velocity errors e1 in Case 1 

Fig.3. Trajectories of Roll angle errors e2 in Case 1 
 
Case 2(a). Now we assume that the switching topologies can 
be change with following switching signal: 
 1                    Κ Κ 0.252     Κ 0.25 Κ 0.53     Κ 0.5 Κ 0.754        Κ 0.75 Κ 1       Κ 0,1,2, …    

 
Fig.4.Fully connected switching topologies 

 

Fig.4 shows fully connected switching topology  with           1, … ,4  .We applying the measurement output feedback 
controller on fully connected switching topologies with T=2s. 
Results are given in Fig.5 and Fig.6.  A 5 is essential condition 
to solve the switching network topologies for cooperative output 
regulation of MAS .From the Results of fixed and fully 
connected switching topologies it can be seen that roll angle and 
sideway velocity of the agents converge to their center. 

  
Fig.5. Trajectories of velocity errors e1 in Case 2(a) 

 
Fig.6. Trajectories of Roll angle errors e2 in Case 2(a) 

 
Case 2(b). We discuss the case of partially connected switching 
topology when communication between leader and follower or 
between two neighbors is lost. All the parameters are same as in   
case 2 (a) and initial values are randomly chosen between [0, 1]. 
We obtain partially connected switching topology in Fig.7 and 
its Simulation results in Fig.8 and Fig.9. It is observed that 
sideway velocity and roll angle errors of all agents converge to 
zero. 

 
Fig.7. Partially connected switching topologies 
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Graph can switch periodically from     and as long as 

 satisfies A 5 cooperative output regulation can be solved 
with any switching period. On the other hand regulation error of 
any follower approach to zero, if that follower in the union 
graph is reachable from the leader. 

  
Fig.8. Trajectories of velocity errors e1 in Case 2(b) 

 
Fig.9. Trajectories of Roll angle errors e2 in Case 2(b) 

 
5. Conclusions 

 
This paper presents a measurement output feedback control 
method to solve the cooperative output regulation of higher-
order MAS under fixed and switching network topologies. 
Luneburg observer and distributed observer are used to measure 
the internal states and relative states of agents.The considered 
output regulation problem is solved under some standard 
assumptions. Further work will be focused on the cooperative 
output regulation problem for switching exosystem and linear 
parameter varying systems. 
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