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ABSTRACT 

Radiation from line and rectangular arrays of 
periodic, linearly phased, electric current dipoles is 
investigated in the frequency domain. The reference 
solutions are obtained via the classical element-by-
element summation approach. High frequency 
asymptotic formulations are obtained in terms of 
Floquet Waves and their corresponding tip-diffracted 
contributions. A synthetic aperture type approach is 
applied in modeling one-and two-dimensional finite 
arrays. 
 

I. INTRODUCTION 
Periodic large arrays of short radiating elements have 
been investigated for the last decade or so, since they play 
an important role in phased-array antennas with flexible 
beam-steering and laser-beam type very narrow beam-
forming capabilities, frequency selective surfaces, etc. [1-
8]. The traditional direct method is the application of 
Method of Moments (MoM) [9] which is based on the 
frequency domain (FD) Green’s function formulation plus 
an element-by-element summation approach. This, 
however, becomes too complex and numerically time-
consuming for large-size arrays. Felsen and his colleagues 
have introduced various representations for one-(1D) and 
two-dimensional (2D) arrays in terms of propagating and 
evanescent Floquet waves (FW), and FW-modulated 
edge- and tip-diffracted waves (see, e.g., [5-8] and studies 
listed in their references). The problem has been solved 
via a variety of alternative techniques in these studies, 
which have granted different insights into collective 
behavior of the dipole-excited wavefields. 
 
In this study, numerical investigation of 1D infinite, semi-
infinite, finite line arrays, and 2D rectangular arrays of 
linearly phased, periodic, infinitesimal axial electric 
current dipoles is discussed. Element-by-element 
summation based on the frequency domain Green’s 
function representation of an individual dipole element is 
reviewed in Section II. High frequency asymptotic 
formulations, which are constructed in terms of radiating 

and evanescent FWs as well as their corresponding tip-
diffracted contributions are reviewed in Section III. Finite 
arrays are modeled using a synthetic aperture type 
approach constructed via properly renormalized Floquet 
wave contributions of semi-infinite line arrays. Finally, 
the conclusions are outlined in Section IV. 

 
II. ELEMENT BY ELEMENT SUMMATION  

The geometry of the periodic line array of Nz linearly 
phased dipoles is shown in Fig. 1. The infinitesimal z-
directed dipoles with unit current amplitude are phased 
linearly as zzndkη , n=0,1,…,Nz-1, where zzdkη  denote 
the inter-element phase increment along z coordinate. 
 

 
 
Figure 1. Geometry of the line array 
 
The radiated field can be determined by the z-component 
of the magnetic vector potential A

r
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Under the assumed exp(jω t) time-dependence, Az can be 
expressed as 
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The geometry of the rectangular array is shown in Fig. 2. 
The rectangular array is comprised of Nx line arrays 
shifted by dx along the x-axis each containing Nz dipoles 
along the z-axis separated by dz. The dipoles are phased 
linearly as zzxx ndkmdk ηη + , m=0,1,… Nx-1, 
n=0,1,…,Nz-1, where xxdkη  and zz dkη  denote the 
inter-element phase increment along x and z coordinates, 
respectively. 
 

 
 
Figure 2. Geometry of the rectangular array 
 
The field radiated by a rectangular array can be computed 
as, 
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III. FLOQUET WAVE REPRESENTATION 
In what follows, it is demonstrated that numerical 
efficiency can significantly be improved by accounting 
for the contributions from individual dipoles in a line 
array collectively in terms of a small number of FWs     
[5-8]. The beauty of those representations resides on the 
fact that all physical wave objects in terms of propagating 
(PFW) and evanescent Floquet waves (EFW), as well as 
FW-modulated diffracted waves and their field 
contributions can be analyzed either individually, or 
collectively. The starting point will be the FW 
representation for the field radiated by an infinite line 
array. 
 

INFINITE LINE ARRAY 
The field radiated by an infinite line array of dipoles 
oriented along the z-axis is the same as (1b) except that 
the n-sum extends from −∞ to +∞ instead of from 0 to  
Nz-1. Alternatively, the total wavefields can be expressed 
in terms of the periodicity-induced FWs. As expressed in 
[7] this is achieved by using “the equivalence between 
summation over the contributions from individual 
elements in an array and their collective treatment via 
Poisson summation in terms of an infinite series of FWs. 
Poisson summation converts the effect of the infinite 
periodic array of individual phased n-indexed dipole 

radiators collectively into an infinite superposition of 
linearly smoothly phased q-indexed equivalent FW-
modulated line source distributions along the axis of the 
dipole array.” 
 
The total magnetic scalar potential can be expressed as a 
superposition of q-indexed FWs FW

qA  [7] and the Hankel 
Function can be approximated asymptotically as 
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The z-domain wavenumber zqk  and the radial 

wavenumber qkρ  are given by 
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The square-root function in (4b) is defined so that 

{ } 0Im ≤qk ρ on the top Riemann sheet, consistent with the 
radiation condition when ∞→ρ . 
 
Note that, |||| kkzq =  defines the cutoff condition for the 

qth FW, which is radially propagating for |||| kkzq <  and 

evanescent for |||| kkzq > . 
 
Each PFW contributes at the observation point P a ray-
asymptotic field lying on a ray cone with semi-angle 
 
 )/(cos 1 kkzqq

−=β . (5) 
 
Because of the exponential decay of the EFWq along ρ, a 
few terms may suffice for an adequate approximation 
away from the array axis. EFWs become significant only 
near the array and can be neglected away from the array. 
 
Fig 3 shows the amplitude of Ez versus ρ of an infinite 
array with inter-element spacing dz=2λ and ηz=0.5. In this 
example, the element-by-element summation with 
Nz=1000 is considered as the reference solution. The array 
geometry with dz =2λ permits 3 PFWs to propagate away 
from the axis those with indexes q= -2, -1, 0. While EFWs 
can be neglected away from the axis, including more and 
more EFWs near the array assures a better agreement 
between the reference solution and the asymptotic 
solution in terms of FWs. 



 
 

Figure 3. Amplitude of Ez versus ρ at z=0 radiated by an 
infinite line array. 
 

SEMI-INFINITE LINE ARRAY 
If the array is truncated at z=0, finite Poisson summation 
may be used to convert the individual dipole radiations 
into collective truncated wavefields -- the Floquet waves -
- which can be expressed as [8] 
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where U is the Heaviside unit function. FW

qA  is given in 
(3) and therefore every FW in (6) is the same as in the 
infinite array case, but these are confined to the region 

qβθ <  with qβ  locating the conical shadow boundary of 
the qth PFW. The shadow boundaries for the EFWs are 
defined as )/(cos 1

zqkk−  and hence the argument of the 
Heaviside function should be modified accordingly. 
EFWs can be neglected when observation point is 
sufficiently far away from the array axis. However, EFWs 
excite propagating diffracted fields that have to be taken 
into account. 
 
A0 in (6) is the individual contribution of the n=0 indexed 
dipole and equals ( )d

jkR ReA d π4/0
−= . The last term d

qA  
in (6) is the qth diffracted FW which arise from scattering 
of the PFWs and EFWs at the tip truncation of the array 
and is computed via the steepest descent path integral 
through the saddle point θ, and can be expressed as [8] 
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The FWs FW

qA  in (6) are discontinuous at the shadow 

boundary qβθ =  and the discontinuity is compensated 
by an opposite discontinuity of the diffracted fields in (7); 
so the continuity of Az is restored. The function F(.) in (7) 

is the transition function of the uniform theory of 
diffraction (UTD) [5, 8] 
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The argument qδ of the F function in (8) is given by 
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F can be expressed in terms of the complementary error 
function as follows: 
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The ± signs apply for ( )q

je δπ 4/Re  greater/less than zero. 
 
Fig. 4 shows the amplitude of Az at a radial distance 
Rd=2λ for inter-element spacing dz=2λ and ηz=0.25. In 
this angular scan example, the element-by-element 
summation with Nz=1000 is tested to be the reference 
solution. The array geometry dz =2λ, permits 4 PFWs to 
propagate away from the axis those with indexes q= -2,    
-1, 0, 1. It is clear from the figure that the FWs are 
discontinuous at these shadow boundaries and that this 
discontinuity is compensated by adding the diffracted 
fields. The FWs together with the diffracted waves agree 
very well with the reference solution. 
 

 
 
 

Figure 4. Amplitude of Az vs. θ radiated by a semi-infinite 
line array. 
 

FINITE LINE ARRAY 
To obtain the field radiated by the finite line array 

consisting of Nz dipoles, the effects of the truncation on 
both ends can be accounted for by the superposition of the 
contributions from two oppositely phased semi-infinite 
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arrays, one of which is shifted along the z-axis by z=Nz dz 
and hence can be expressed as 
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This is illustrated in Fig. 5. For the Nz-element array, 

the end contributions at the observation point P are shown 
as 1 and 2. The synthetic aperture approach is based on 
replacing the contributions 1 and 2 with the contributions 
1 and 3. This is achieved by subtracting contributions of 
the axially-shifted semi-infinite array from the 
contributions of the original semi-infinite array as given in 
(11). Numerically, doing calculations for point P with 
axially-shifted semi-infinite array is equivalent to 
performing the calculations with the original semi-infinite 
array for the point P’. 
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Figure 5. One-dimensional semi-infinite array and the 
application of synthetic aperture approach. 
 

RECTANGULAR ARRAY 
The field radiated by a rectangular array shown in    

Fig. 2 can now be computed as a superposition of 
contributions from finite line arrays shifted along the x-
axis by x=m dx with a phase increment xxdkη  along x 
axis and can be represented as 
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Figure 6 shows the amplitude of Az versus θ  at a radial 
distance Rd=100λ at x=0 radiated by a rectangular array 
with Nz=10 and Nx=3 . The interelement distances are 
dx=0.25λ, dz=0.25λ and the interelement phasings are 
ηx=0, ηz =1/3. 
 

V. CONCLUSION 
Near-field effects of infinite, semi-infinite, finite periodic 
line, and rectangular arrays of phased infinitesimal axial 
electric current dipoles are investigated numerically in the 
frequency domain. The traditional element-by-element 
summation approach is compared against high frequency 
asymptotic formulations in terms of PFWs, EFWs and 
their corresponding tip-diffracted contributions. The 
radiated fields from large line and rectangular arrays are 
constructed using the synthetic aperture approach. 

          
 

Figure 6. Amplitude of Az versus θ radiated by a 
rectangular array. 
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