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Abstract

We formulate a parameterized family of linear quadratic two-person nonzero-sum stochastic differential
games where the players are weakly coupled through the state equation and the loss functions, and strongly
coupled through the measurements. A small parameter € characterizes this family, in terms of which the
subsystems are coupled (weakly). With € = 0 the problem admits a unique Nash equilibrium solution, while
for € #£0, no general constructive method is available to obtain the Nash equilibrium solution and to prove
existence and uniqueness. In this paper, we first obtain a candidate Nash solution which involves only finite-
dimensional controllers, and then show its existence and unicity (for sufficiently small € # 0, and within a
certain class) by proving the ezistence and uniqueness of the solution of a pair of coupled nonlinear differential
equations. We also show that approzimate solutions to this pair of differential equations can be obtained using
an iterative technique, and that these approzimate solutions result in approrimate Nash equilibrium solutions.
Further, the equilibrium policies are linear, requiring only finite-dimensional controllers, in spite of the fact
that a separation (of estimation and control) result does not hold in the strict sense.

Keywords: Stochastic differential games, Nash equilibria, Weak coupling, Stochastic measurements.

1. Introduction

We formulate a class of stochastic nonzero-sum differential games where the players are weakly coupled
through the state equation while sharing the same source of information (measurement). This latter feature
briﬁgs in a strong informational coupling, the presence of which makes a constructive derivation of Nash
equilibria quite a challenging task unless the weak coupling parameter (€) is set to zero. In the approach
developed in this paper, we relate the existence of a finite-dimensional Nash equilibrium to the existence of a
solution to a pair of coupled, nonlinear differential equations. Then, we prove the existence of a solution to the
differential equations by using perturbation theory. Further, we show that the resulting solution is admissible
in the limit as € — 0, thus justifying the choice of a finite-dimensional Nash equilibrium, even though it may
not be unique.

* This research was supported in part by the U.S. Department of Energy under Grant DE-FG-02-88-ER-13939.
T An earlier version of the paper was presented at the 9th International Conference on Analysis and Optimization, Antibes,
France, June 12-15, 1990.
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The rest of the paper is organized as follows. A precise formulation of the problem is given in the next
section, followed (in section 3) with the derivation of a candidate solution and verification of its existence for
€ # 0 sufficiently small. Section 4 discusses the properties of the Nash equilibrium solution obtained in section

3, and section 5 provides the concluding remarks.

2. Problem Statement

The class of linear-quadratic, nonzero-sum, stochastic differential games under consideration, with weak
spatial and strong informational coupling between the players, can be defined in precise mathematical terms
as follows: Given an underlying probability space, the evolution of the composite state (z := (xll,:czl)’ } of the
game is described by the linear 1td stochastic differential equation:

das = A(t; €)zedt + B (tyuidt + B2 (t)uidt + F(t)dwy,
(1)

tO S t S tf1 T, = Zo;

where the initial state zo is taken to be a Gaussian distributed random vector with mean Zo and covariance

Yo > 0, dim(z?) = n;, dim(u?) =r;, i = 1,2,

Bi(t) 0
Alt;e) ;=< ejl 6‘;1112 )(t); Biy=1 ... |;B(t):=] ... |, (2)
21 2 0 Bz(t)

F(t) = block diag (Fi(t), F2(t)); FiFi >0, FF;>0,

¢ is a small (in magnitude) (coupling) parameter, and the partitions of A, By, B, and F are compatible
with the subsystem structure, so that with € = 0 the system decomposes into two completely decoupled and
stochastically independent subsystems, each one controlled by a different player. The functions u} and u?,
t > to, represent the controls of Players 1 and 2, respectively, which are vector stochastic processes with
continuous sample paths, as to be further explained in the sequel. The driving term w; := (wtl' , w?’)' , >t is
a standard vector Wiener process, which is independent of the initial state zo.

The common observation y of the players is described by
dy, = C(t)zsdt + G(t)dvy, v, =0; C:=(C1,Ca), (3)

where dim(y) = m, C; is mxri, i = 1,2, GG' > 0, and v, ¢ 2 %o is another standard vector Wiener
process, independent of {w;} and zo. This common observation constitutes the only strong coupling between
the players.

All matrices in the above formulation are taken to be continuous on the time interval [to,t7]. Let
Cp = Cmlto,ts] denote the space of the continuous functions on [to,ts], with values in R™. Further let };
be the sigma-field in C,, generated by the cylinder sets {y € Cm,ys € B} where B is a Borel set in R™, and
to < s < t. Then, the information gained by each player during the course of the game is completely determined
by the information field Y;, t > to. A permissible strategy for Player i is a mapping ¥;(-,-) of [to,tf] X Cm
into JR™ with the following properties:

(i) 7:(t,n) is continuous in ¢ for each 1 € Cp,.

(ii) 7i(t,n) is uniformly Lipschitz in 7, i.e., lvi(t,m) — %, )| < klln—¢€ll, t e [to,ts), Ny € € Crm, Where ||-||
is the sup norm on Cp,.
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(iif) ui =i(t,n) is adapted to the information field Y.

Let us denote the collection of all strategies described above, for Player i, by I';. It is known (see,
for example, [7]) that, corresponding to any pair of strategies {v; € I'1,v2 € Iz}, the stochastic differential
equation (1) admits a unique solution that is a sample-path-continuous second-order process. As a result, the
observation process y;, t > to will also have continuous sample paths.

For any pair of strategies {y; € I';, v, € T2}, we introduce the cost function for Playeri, ¢ =1,2, as

- tr .o
Kons) = B {at, @i, + [ (@it o+ e}, @
to
where all the matrices are nonnegative definite and

élf(e) := block djag (Qlf, Engf); ng(e) := block dlag (€Q21f: sz),

Ql(t; €) := block diag (Q1(t), eQ12(t)); Qg(t; €) := block diag (eQ21(t), Q2(t)).

Note that the players’ costs are also coupled weakly, so that if ¢ = 0 each cost function involves only that
player’s state vector and control function. Of course, even with € = 0 there is still an “informational coupling”
through the common observation, which implicitly couples the cost functions under any equilibrium solution
concept.

Adopting the Nash equilibrium solution concept, we seek a pair of strategies (vi € I'1,v5 € I'y) satisfying
the pair of inequalities

Ji(11) S Ji(n,73); () < (v, v2), (5)

for all y; €'y, 2 € I'y. To show the explicit dependence of the Nash policies on the available information and
the coupling parameter €, we will sometimes use the notation (¢, y;e).

Let us first list a few known facts on the Nash solution of this stochastic differential game, when € is not
necessarily a small parameter (in absolute value).
1. Conditions under which a Nash equilibrium exists are not known. What is known, however, is that the
solution (whenever it exists) will not satisfy any separation principle (between estimation and control), which
is in some sense true even for the zero-sum version of the problem [3].
2. The discrete-time version of the problem, but with private measurements for the players that are shared with
a delay of one time unit, has been considered before in [2] where it has been shown that the Nash equilibrium
solution is unique and linear in the available information for each player, whenever it exists. The procedure
developed there can readily be used to derive a similar result for the common information case (in discrete-time),
when even though a separation result does not apply, the Nash controllers for the players have finite dimensional
representations (i.e., the controller dimension does not grow with the number of stages in the problem) [4].
3. For the continuous-time problem, however, the procedure of [2] does not apply, and consequently a proof
of existence and uniqueness of linear Nash equilibria has been quite elusive for the past decade. For the zero-
sum version (of the continuous-time problem), it is possible to prove existence of a unique linear saddle-point
equilibrium, though using an indirect approach that employs explicitly the interchangeability property saddle-
points [3].

In view of this past experience, we adopt in this paper a different approach for the nonzero-sum stochastic
differential game, that exploits the weakness of the coupling between the two subsystems. Our results are
presented in the following sections.
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3. A Finite-dimensional Nash Equilibrium

Our first result is a characterization of a finite-dimensional Nash equilibrium for the nonzero-sum differential
game of section 2, when € is not necessarily a small parameter. Here, though, we assume the existence of a
solution to a nonlinear matrix differential equation.

Toward this end, let P* and P? be n :=n1+na dimensional symmetric matrix functions defined on the

time interval [to,%s], satisfying the coupled nonlinear differential equations

. —at . =7 % %
Pl 4+ AVPl 4 PYA; — P'B1B P' +Q,=0; P'(t5) = Quy, (6)
P2 AP 4 PPA? — P2ByaP? + 0, =0; P2(t;) = Qap, (7)
where )
Bi(t) = [Bi(t)lv()]{nx'ria (8)
C:Qi(t; €) := block diag (Qi(t, €),0); éif(e) .= block diag (Qss(€),0), (9)
- Ale) —B:BlP
AY(PY, P%e) = N s 4=1,2 10
( 9 (KC’ M(e)—KC)’ PERS (10
M(e) := Ale) — BB P — B,ByP, (11)
. PL + P}, PL+PL . ,
pu= BT 12Tt ) Pl jk'th block of P*
(P221+P223 PR+Py )" ’ oo 12
K :=2C'(GG")™, (13)
3 = A(e)'S + ZA(e) + FF' — C'(GG') 7' CE; E(to) = Zo- (14)

Note that (6)-(7) is a set of coupled nonlinear matrix differential equations, the coupling being through the
matrices A' and AZ.

Theorem 3.1. For a given ¢, let the set of matrix differential equations (i 6)-(7) admit a symmetric solution
Pl(e) > 0, P?(¢) > 0. Then, the stochastic differential game of section 2 admits a Nash equilibrium solution
for this value of ¢, given by

Yty €) = —Bi(Ph + Ph)éy + (Pl + Pigalyto St <155 1=1,2, (15)
where & := (&,%})" is generated by the Kalman filter:

di = A(e)zdt — (By B} + ByB})Padt + K|dy: — C2dt]; &, = To
o (16)
di = M(E).’%dt -+ K[dyt - Cﬂ’itdt], "ito = Zg.

Proof. We verify that under (15) the pair of inequalities (5) are satisfied. For Player 1, this reduces to the
following stochastic control problem:

t

~ f ~ f
min B{z}, s o, + [ (@015 )z, + i vt}
to

subject to
dz; = Ae)zdt — By B} Pzdt + Biuldt + Fdw,

dzt = KCl'tdt =+ [M(E) - KC]l%tdt + KGd’Ut; Zty = Zo,
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and with
u% :’YIt(tyy): B! EPL
Note that {z;} is the same stochastic process as {2¢}, provided that v, = ;.

Now, using the notation introduced prior to the statement of the Theorem, and introducing the 2n-
dimensional vector &; := (z},2})’, the cost function to be minimized can be re-written as

z tf z ’
B, Gty + [ (€000 96+l )y,
to
The associated state equation is
dgt = Alﬁtdt + élui + block dia'g (Fa KG)(dwia d’"i),;&o = (936,5’6 ,a

and the measurement process is
dyt = (C, 0)§tdt + det,yto =0.

Hence, the problem is a standard LQG stochastic control problem, for which the unique solution is
~1
us = u(t, 2) = —B1P1(t)ﬁt,f« 2 1o, (%)
where 2; := E[2; | ys, ] is generated by the Kalman filter

d% = (A BB PY)sdt + Rldy, — (C,0)3,dt]; 5, = (z), 7Y,

S
i

[£(C,0) + (0, GG'K'Y|(GG") Y,
(*)
Y = SAY 4+ A5+ block diag (FF', KGG'K) — K(GG)K';

%(to) = block diag (£, 0).

We now claim that ¥ = block diag (%,0), where % is generated by (14), solves the preceding equation. To see
this, first note that with 3 as given above,

K = [(EC'(GE)Y,K'=[K" K"
i 15/ dd
SAr (EA SC'K )
0 0

from which it follows that the 11-block of () is precisely (14). The 12-block is
0=3C'K' - K(GG')K',
which is an identity. Finally, the 22-block is
0=KGG'K - KGG'K' = 0.
Now let (21, 25,)' =: %, where ;; is n-dimensional. The first component satisfies the DE
d%1 = [A(€)21 — BLB(Piy, Ply)21 — Ba By Py — By By(Pl, Ply)25)dt + Kldy, — C51]; 214, = 7o,
whereas the second component satisfies

dﬁz = [(M(e) - KO)ﬁz + KCﬁl]dt + K[dyt — Cél]; 22ty = Zo.
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Let € 1= 51z — Zo¢, for which a DE is
de; = [A(e) — B1B}(Piy, Ply) — KCledt, €, = 0.

Hence, 21(y) = 22(y), and using this in the equation for 35, we arrive at the conclusion that 2 (y) = 22(y) =
#4(y), where the latter was defined by (16). Furthermore using this in (#x) leads to (15) for ¢ = 1. By
index-symmetry, we also have an analogous result for 7 = 2. o

For the result of Theorem 3.1 to be of any value, we have to show that there exists a solution to the coupled
equations (6)-(7). As indicated earlier, these are not standard Riccati equations because of the dependence of
Al and A% on P! and P?. It is at this point now that we make use of the weak coupling between the two
subsystems controlled by the two players.

Towards establishing existence of a solution to (6)-(7), let us first assume that Pi(t;e), i = 1,2, are
analytic in € and

l
Pi(t;e) = Y Ply(t)e* +0(eHY), i=1,2, (17)
k=0

uniformly in the interval [to,ts], and for any ! > 0. Then, if we can show that the P(ik) ’s are continuous
functions of ‘¢’, then by an application of the implicit function theorem to differential equations (see, [13]
Theorems 7.1 and 7.2), we have that (17) solves (6)-(7) for € € (—¢o, €o), for some €o > 0. In order to do this,
let us first obtain an expansion of A* in terms of e. Under (17), At is expandable in terms of € if K is, and
writing K as K = Y0 _, K(nye® + 0(e*1), we have

Ky = 2 C(GG) ™, (18)

where
S(o) = A(O)E(o) + Z(O)AI(O) + FF' — Z(O)CI(GG')_ICE(O); 2(0) (to) = Yo, (19)

n
Yy = A0 Zm) + Zm) Ay T Bin-1 Ay T A E@-1) ~ > 2w C(GG ) CEnp);
k=0 (20)

Emy(te) =0, 21,

Aoy = block diag (A1, A2); Aq) ==( AO A(1)2 )
21

Note that (19) is the standard Riccati equation that arises in Kalman filtering, and hence admits a unique
continuously differentiable solution. Furthermore, for each n > 1, (20) is a linear differential equation and
hence admits a unique solution. Then, by the implicit function theorem, there exists a neighborhood of ¢ =0
where (18) is valid. In view of this, A’ is expandable in €, A* = Z;zo ~2n)en + 0(e!*t), where

i _ [ Am —B;Bp™ i— 19
™7\ KmC Mu—KnC |’ 'S

Apy=0,n2>2,and M) is defined by (11) by replacing A by Ay, P vy P where the latter is given by
(12) with the superindex (n). In view of this, (6)-(7) are decomposed into

.. it . .. A = . =
Py + AloyPloy + PloyAlo) — PloyBiB; Py + Q; = 0; Plo)(ts) = Qs> (21)
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and for n > 1
Ploy + (Alg) — B: B.P; Yoy) Py + Ploy (Algy — B.B,P ©)

n ~ n n—1 . (22)
XAl Platy + 3 PlaiyAlsy = Y Plueig BiBiPlyy = 0 Pl (t7) = 0.
k=1 k=1 k=1
Now, at the outset it may seem that (21) is a nonstandard nonlinear matrix equation; however a little scrutiny
reveals that
Pfoy = block diag (P};0),0,0,0); Pg) = block diag (0, Plyq),0,0),

where Pz(O) satisfies the familiar DE
B0y + AiPlygy + PiioyAi — P}y BiB}Py0) + Q; = 0; Plo)(ts) = Qi (23)

which, being a Riccati equation of the type that arises in linear regulator theory, admits a unique solution

zz(O)(t) 2 0 for all ¢ € [to,27]. On the other hand, (22) also admits a unique solution for every n > 1, since
it is a linear DE. Therefore, by the implicit function theorem, a solution to (6)-(7) exists and can be computed
recursively up to various orders of € by solving two Riccati equations and a sequence of linear equations, which
is reminiscent of the sequential design of the (deterministic) linear regulator with weakly coupled subsystems
(8], [10] (see also [5]), and deterministic LQ game problem [9], [12]. Hence, we arrive at the following major
resuls.

Theorem 3.2. There exists an €o > 0 such that for all € € (—eo, ), (6)-(7) admits a unique solution which
can be computed sequentially from (23) and (22). Then, the policies (15) indeed constitute a Nash equilibrium,
for € in the given neighborhood. <

4. Properties of the Nash Equilibrium Solution

In the previous section we first proposed a candidate Nash equilibrium solution and then proved that the
two coupled matrix DE’s in terms of which this equilibrium solution is defined indeed admit solutions when the
coupling parameter € is small. The question we raise here is whether the proposed Nash equilibrium solution has
any desirable properties to justify the choice of this particular Nash equilibrium as compared to any other Nash
equilibrium the problem might admit. In continuous-time stochastic games, this seems to be a relevant question
since a proof of unicity (which is a much stronger result) is quite elusive at this point. Towards answering this
question, in what follows, we show that the proposed Nash equilibrium solution is admissible in the limit as
€ — 0, and also it is well-posed in a sense to be described later. Further, we also provide a policy iteration
interpretation to the approximate solutions.

Before we proceed further, we note that the series expansion of Pi(t;¢€), i = 1,2, leads to a similar series
expansion for the Nash equilibrium solution as follows:

n
7t 9h) = Y 1 (6,95) + 0(e ), (29)

1=0
where -, )(t, Y§) is obtained by replacing Pi(t;¢) by P; (l) () in (15). Now, we are in a position to analyze the
properties of the Nash equilibrium solution, and the various terms in its expansion.

We first recognize that the zero’th order term in the expansion can be obtained by solving the original °

stochastic differential game after setting ¢ = 0. Note that with € = 0 the game dynamics are completely
decoupled, but the players’ policy choices are still coupled through the common measurement.
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To obtain the Nash equilibrium of the “zeroth order game” , we first fix u2 = 'yéo) (t,y) and minimize J1
over v, € I'y subject to (1) with e = 0. Note that this is not a standard LQG problem because of the fact that
we do not know the structure of 72(,0) (t,y5) (in general, it could even be a nonlinear policy). Despite this, we

can solve the above problem, with the solution given below in the form of a lemma.

Lemma 4.1. The stochastic control problem defined above admits the unique solution

1O (t,y) = —Bi 5181, (25)

where S, > 0 satisfies the Riccati equation
81 + A4Sy + S141 — $1B1B1S1 + Q1 =0; Si(ty) = Quy, (26)

and
dil = (A1 — B1B}S1)&;dt + Ki(dy: — (C18} + Cod)dt); &, =0, (27)
di? = Ags2dt + Byl (t,yb)dt + Ka(dys — (C1} + Cai})dt); 7, =0, (28)
0) K§0) 0) v -1
K©® .= xo | = O (ce") ™, (29)
2

SO _ 4,50 _ 5@ 4 _ FF' + KOGEK® =0; % (to) = o, (30)

Ap := block diag (A1, Az).
Proof. First, we note that J1(v1,72;€ = 0) can be written as

J1(11,725€ = 0) = B{ [ || u} + BiSua} || dt} + x}, S1(to)z3,
+ [} Tr[S1 () Fy(8) F1 (t))dt},

where u! = v1(t,y§) and Equation (31) follows from the standard “completing the squares” argument [6]. Note
that (31) is independent of 7§°) (t,45). Now it follows, from a standard result in stochastic control, that (25)
is the unique solution that minimizes (31) provided that we can show that the stochastic control problem is
“peutral” i.e., & := x—4% is independent of both u} and 'yéo) (t,98). To show this, we simply note that the sigma
field o, with respect to which u} is measurable also includes the sigma field generated by 'yéo) (t,y¢). Hence,

one can easily modify the proof of the neutrality of the standard one-player LQG stochastic control problem [6]

(31)

to apply to our problem, thus completing the proof. o
Now we reverse the roles of the players, fix ’yio) arbitrarily and minimize J, over I'z, with ¢ = 0, to

arrive again at a unique solution:
% (t,y) = — By S}, (32)

where Ss > 0 satisfies
Sz + A’252 + SpA5 — 32323552 + Qo =0; Sz(tf) = Qay, (33)

and #? is given by (28) with 7;0) replaced by the expression in (32). Since (28) depends on #1 also, we will
need here (27) with the term —Bj B{S12} replaced by Bn§°) (t,y). Since (25) and (32) are unique responses, it
readily follows that the Nash equilibrium policies are unique, and given by (19) and (32) with £} and 22 given
by (27)-(28), with 7;0) in (28) replaced by the expression in (32). This completes the derivation of the zeroth
order solution. It is useful to note that this zeroth order solution is also the unique solution to a team problem
with objective function any convex combination of Jfo) and Jz(o), where Ji(o) is J; with ¢ = 0. Furthermore,
S; = Pfi(o), where the latter was defined by (23); (30) is identical with (19), and (29) is the same as (18) with
n = 0. All this implies that (25) and (32) are the same as (15) with € = 0.

Next we show that the Nash equilibrium pair obtained in the previous section is an admissible solution
of the original problem as € — 0. First, we recall the notion of an admissible solution [1]:
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Definition 4.1. A Nash equilibrium pair {y!,~v5'} is said to be dominated by another Nash equilibrium pair
{+7%,7%2} if the following pair of inequalities are satisfied:

Ji(% 5% < Ti(ph Y, i=1,2,

with strict inequality holding for at least one player. A Nash equilibrium pair is said to be admissible if it is
not dominated by any other Nash equilibrium pair. ©

It is well-acknowledged in literature that, in the absence of a proof of uniqueness, one criterion for choosing
a particular pair of Nash equilibrium policies is its admissibility. In what follows, we will show that the Nash
equilibrium pair {v{,7;}, obtained in the previous section, is admissible in the limit as € — 0.

First consider the following team problem:

. J ’ T 34
7161'1‘]13:1'?261‘2{ 1(7v1,72) + J2(71,72)} (34)

subject to the state equation (1). Let the optimal team cost be denoted by J:. From standard LQG stochastic
control theory [6], J¢ is given by

t
Jt = B{ / "Tr{SH(t; )P ;) B BY PH(t;€)]dt + o, P*(to) sy} - :
io . (35)

+ [ Y e [P 5 ) () F () de,
0
where P%(t;¢€) and X(t;€) satisfy the following Riccati differential equations:
P'+ A'P'+ P'A—P'B'B'P' + Q' = 0; Pi(ts) = Q%, (36)
3= A% + P4 - BCN(GG)TICE + FF' = 0; Si(to) = o, (37)
and -
Bt := (B, B;); Q' :=block diag{Q1 + €Qa21, Q2 + Q12}
QY = block diag{Q15 + €Qa1f, Q27 + €Quas}.
Applying the implicit function theorem ([13] Theorems 7.1 and 7.2) to (36) and (37), we can show that
P(t;¢) = block diag{Py1(0)(t), P 22(0) ()} +0(e)
and

¥t €) = Do) (t) + O(e).
Now applying the dominated convergence theorem [11] to (35), we have that
' iy o " :
JO .= !‘E,I%)J: = Z E{/ TT‘[Z(O) (t)P,;i(o) (t)B*B* Piz-(o) (t)]dt + wZOPﬁ(O) (to)a':'éo} _
i=1,2 Jto (38)
iy
+ [ TrlPa O FOF (o))
to

In a similar manner, we can also show that lim._,¢ J.(v§,73) = J©, where

Je(r1,72) == J1(1,72) + J2(71,72)-

Now we observe the following inequality:
T < J(vihvs)- (39)
From the discussion above, (39) becomes an equality in the limit as ¢ — 0. Hence, asymptotically by using

another Nash equilibrium pair, the cost for at least one of the players will increase, implying that {7t,73} is
an admissible Nash equilibrium pair in the limit as ¢ — 0. This leads to the following theorem.
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Theorem 4.1. The pair of Nash equilibrium strategies {vi(.;€),73(.;€)} given by (15) satisfies the following
two properties:

1. The zeroth order solution {'yio) (¢, yo),'yzg) ¢, 38)} == {75t y8;0),73 (¢, ¥5;0)} is the same as the unique
Nash equilibrium solution of the problem with € =0 i.e., the solution is continuous at € = 0.

2. {v2(;€),75(;€)} is an admissible Nash equilibrium pair in the limit as ¢ — 0.

Proof: See the discussion preceding the statement of the theorem. o
Next, we study some properties of the approximate solution. First, we can show (see, Appendix A) that,
for any pair of permissible policies {v1,72}, the following pair of inequalities hold:

J2,A?) < Ji(rwY) +0(e), (40a)

Jz(’Yio),’YzO)) < Jz(’y(o) ¥2) + 0(€). (40b)

In other words, the zeroth order solution is an 0(¢) Nash equilibrium solution. Further, by noting that
limeode (fy1 ,'y(o)) = J©  we can conclude that it is an admissible 0(¢) Nash equilibrium pair.

Noting the fact that the zeroth order solution provides an 0(e) equilibrium, the natural next step is to
seek a pair of policies 7(0) + e'yi(l), i = 1,2, which provide an 0(e?) equilibrium i.e., for any pair of permissible
policies (71,72) € T'1 x Tz the following pair of inequalities are satisfied:

J(1? + ey, + eriD) < Ty (7,7 + e 1) 4 0(e?), (41a)

B(r® + ey, 40 4 i) < B(Y + erlM, 72) + 0(D). (41b)

Further, to ensure that the resulting 0(¢?) Nash equilibrium provides the least possible cost to both players (up
to 0(e?)), we also require that

ROP + 0 + ) = mip Ji(2,75”) + 0, (122)
B0 +er?, 20 + V) = min BV, 1) + 0(e?). (42b)

We have shown in Appendix B that 'y(l), i = 1,2, obtained by replacing P* by Pi1) in (15), satisfies (42a)-
(42b), and (41a)-(41b) can be verified in a similar fashion as in Appendix A.

Note that the equations (40a), (40b), (41a), (41b) describe the first two steps of a modified policy iteration
scheme as follows: In a normal policy iteration, at each step, one would obtain the best response of a player
given the policy of the other player. But, in our modified policy iteration, at the n’th step, we seek a response
that is 0(e®*?) close to the optimal response. The reason is that, a normal policy iteration would result in an
increasing estimator size at each step whereas in our iteration, the estimator size is a constant. The justification
for this modification is provided by Theorem 3.2 of the previous section which states the fact that there does
indeed exist a finite-dimensional equilibrium for the weakly coupled stochastic Nash game for small enough €.

It can be shown in a manner analogous to Appendices A and B that, in general, the pair of strategies

{Z'yi(l) (t,y5)}i=1,2 satisfy the following pair of inequalities:

=0
JAZ%” 3 i) < T, > (4 ) + 0, (432)
=0 =0 =0
JZ(Z’Y(Z) Z Dy < B340, 72) + 0(em ), (43b)
=0
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Furthermore, the following order relationships are also satisfied:

Jl(Zv(l) Zvé”) = min Jl(vl,zvé”)) +0(emHY), (44a)
Jz(y“),zﬂ)&”) = min J, Zv 172) + 0() (4ab)

It should be noted that, while (43a)-(43b) ensure that the resulting solution at each step of the iteration
is an 0(e"*!) Nash equi]ibrium, equations (44a)-(44b) ensure that among all strategies satisfying (43a)-(43b),

the pair of strategies {Z B, ¥6)}i=1,2 provides the least possible cost to both players (up to 0(e"*1)).
1=0

5. Conclusions

It is well known that discrete-time LQG stochastic Nash games [4] and continuous-time zero-sum LQG stochastic
games [3] admit unique linear, finite-dimensional equilibria. Towards answering the question whether this fact
is true also for continuous-time LQG stochastic games, here we have studied systems which are weakly coupled
spatially and strongly coupled informationally. Using perturbation techniques, we have shown the existence of
a finite-dimensional Nash equilibrium for the stochastic game for small enough .

We have also shown that the Nash equilibrium is 0(¢) admissible, and furthermore it exhibits a well-
posedness property i.e., the Nash equilibrium solution with ¢ = 0 is the same as the unique Nash equilibrium
of the zeroth order stochastic game. Also as a means of reducing computational complexity, we have presented
an iterative technique to compute the approximate Nash equilibrium, which involves the solutions of two
(decoupled) Riccati differential equations, and a sequence of linear differential equations, as compared to the
complicated coupled nonlinear differential equations which have to be solved to obtain the exact solution.
Further, we have interpreted the Nash equilibrium solution as the output of a modified policy iteration, which
may serve as a useful tool in proving the unicity of the Nash equilibrium. We anticipate the results presented
here to extend to the multiple (more than two) player situations, but the expressions there are very complicated,
and hence are not provided here.
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Appendix A

Verification of (40a)-(40b):
Consider the following standard LQG stochastic control problem:

in Jy (v, 7™).
min (%)

The minimizing solution to the above problem is given by [6]

71 (t,98) = —B{ (®) P (1)#/ (1), (45)
where
i’ = (A7 — B{Bf ' P#d dt + K’ (dy — CT&/ dt); 37 (t0) = &, (46)
Pl + A Pf 4 PfAf - PFBIBS PT 4+ @F = 0; PI(ts) = QF, (47)
5 = ATSf 4 2fAf - KIGGA'KS + FIFF; £ (to) = ¥4, (48)
and
A1 6A21 0 0
Af 61112 132 0 —B2 B3P, )
K®c, KOC, Ai-BiBPl g —K{C k¢, ’
Kéo)cl K§0)02 —K§°)C’z Ay — BZB§P222(0) - K§0)C2

Bf := (B},0,0,0); Ff :=block diag{Fy, Fz, K©G}; z§ = (%,0,0)',
M7 :=(0,0,I); QF :=block diag{Q1,eQ12,0, Pzzz(o)BzBéPzzz(o)},

Q} = block diag{Q1y,€Q12¢,0,0}; cf :=(Cy,C2,0,0)

K = (BfC? + FFMIG)(GG')™Y; £§ := block diag{¥,0,0}.
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Note that with ¢ =0,

Pi(t;e = 0) = (P} o), 0,0,0).
Also, by applying the implicit function theorem ([13] Theorems 7.1 and 7.2]) to (47), we have that P(t;e) =
P(t;€ = 0) + 0(¢) , which implies that

(4 96) = 1" 98) + 0(e).

Hence, from the quadratic nature of the performance index it follows that

A1) = 1) +0(e).
Equivalently,
i, ery J1(1,7%57) = I (H, %) + 0(e),
which implies (40a). Equation (40b) can be verified in a similar fashion.

Appendix B

Verification of (42a)-(42b):.
From standard LQG stochastic control theory [6], J{ = mellg Ji ('yl,'yéo)) is given by
Y1€la

J =B / th'r[Ef (; ) P*(t;€)Bf BY PY (t; €)dt} + i’ P (to)al
to ; (49)
+ / t Tr(P!(t; ) FF (£)Ff (t))dt + Tr[=E P/ (10)).

Before we proceed further, we make the observation that Af is equivalent to A! given by (10), with P? replaced
by Py, i =1,2. Hence, if P/(t;¢) is expanded as

Pf(t;e) = P({)) )+ eP(fl)(t) + 0(e?),

then P(fl)(t) = P, (t), since Pf,(t) depends only on Py (t), and Pl t) = P({)) (t) as observed in Appendix A.
Next we consider the expression for

1 i - 0 t
Jit = 7131611131J1(71,’Y§ )+ 6’7§ ))’

which is given by

iy , ,
J = E{ / Tr[2f(t;€) PP (t;€) B B PT(t; €)]dt} + 2 P (to)zL
to

ts (50)
+ / Tr[PA(t; 1F! (8) FF (8)]dt + Tr[S PP (t)],
to
where
2= AR L 2 AAY _ KPGG KT 2 () = 5, (52)

AT? is given by (10), with P* replaced by Pl +eP(i1), i=1,2, and Q¥* and K/ are defined analogous to Qf
and K7, respectively. Hence, for the same reasons as before, P(lo) ) = P({); (t) and P(ll)(t) = P(% (t). We can
also show that both £;(t) and %f1(t) are of the form block diag{X, 0}. (To show this, we can mimic the proof
of the fact that ¥ is in this form, which formed part of the proof of Theorem 3.1.) All the discussion above
leads to the conclusion that J{* = Jf + 0(¢®). Hence, from (41a), it follows that (42a) is satisfied. Equation
(42b) can be verified in a similar fashion.
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