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Abstract:

The signals which are oblained as a result of electrical
activitv of the brain arc called as clectrocncephalogram
(EEG) Experimental studies have pointed out that EEG's
characteristics change duc to the mental aclivity of the
human, Evoked potential (EP) are responses of the brain
corresponding to visual, auditory and electrical stimulus.
Central nervous system's functions have been determined
by analysis of the EPs. In this study, Visual Evoked
Potentials (VEP) have been detected by a non-linear
operator. Firstly, we studied artificial data sets then tested
real EEGs with VEP coming from the data base.

L INTRODUCTION

EPs are responses of the ceniral nervous system to
stimulus applied to controlled manner {1]. Their signal-
noisc ratios are between 0-10 dB and thcy have his
frequency components with short term also and low
frequency components with long term [2]. The hardest
subject in clinic neuro-physiology is the extraction of
evoked potentials from background EEGs [3]. These
signals which are recorded from the scull, are much
smalfcr than background EEG. In the injury of brain,
EEGs and EPs have very important diagnostic features.
The sources of these kind of injuries are; cerabral hypoxia
or ischemia, cerebral hypotentian or hypertention, drug
overdose, occlusion of a blood vessel and injury of a nerve
|4]. Especially, VEPs have been used for the diagnosis of

pituitary tumours and mulliple sclcrosis.
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In the analysis of biomedical signals, the spikes have great
importance for diagnosing. Epileptic seizures have been
represented as typical spike characteristics in EEG. Also
QRS complex in electrocardiograph is a spike. Spike
detection is very important in case of many illnesses. In
the signal processing, a spike has been represented a
feature which is located in high frequency region and has
an increasing instantaneous energy [5]. The quantitative
evaluation of the spike has changed from signal to signal,
time to time for the same person. As spike’s width is
increased, its energy is located in low frequency region so
detection becomes harder.

In our study, VEPs have been assumed as spikes and have
been extracted from background as spikes and EEG by
using a non-linear operator. Our algorithm has been
applied to a noisy artificial spike train then to a real EEG
set with VEPs coming from a data base

IL. ANALYSIS OF THE EVOKED POTENTIALS

In the analysis of EPs , generally stimulus synchronised
ensemble averaging has been used since the amplitudes of
EPs arc smaller (han those of the background EEGs. The
essence of this method depends on following assumptions;
1-EPs have a deterministic-repeatable pattern,
2- Background EEG is a fully random signal and
3-EEG and EP are completely dependent on each other .
Despite these assumptions have met challenges in case of
changing EP pattern. To eliminate these challenges,
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following methods have been used; auto regressive moving
average (ARMA), auto regressive model (AR), Fourier
transformation. wavelet transformation and artificial

ncural nctworks.

In applications for interpretation of EP responses; anatysis
duration, sampling frequency and bandwidth of recording
amplificr must be in a suitable manner. Because a noisy
effects could have remained after ensemble averaging EP
responses must be filtered by digital filters which have
same band width without any phase distortion We can
name following filtcring methods as well known methods;
a posterior Wiener filter and Adaptive Wiener filter. In our
study, the method which is based on a non-linear operator
has less computational complexity than those of above
mentioned methods. Therefore, this method has been
suitable for simulated signals and real EEGs, too.

IIL ALGORITHMIC STUDY

Today the non-linear energy operator has been used for
estimation of instantaneous frequency and amplitude
signal. This operator is sensitive to a discontinuity of the
signal.

A. Mathematical background
We consider a band limited signal x(t), Kaiser has defined
a non-linear emergy operator @, for continuous and

discrete domain .1t can be written as follows in continuous

time,

plx(0)] = [x()) - x()x" (1) )]

and in discrete time,

plx(m)] = x* ()~ x(n+1)x(n-1) @
If x() were a linear combination of x, () and x, (1). We
would write as x()=x, ()+x, (1) in discrete time. If these

signals are uncorrelated each other,

Efplx(m]} = E{plx,(mM]} + Efplx,(m]}  ©)

where E[.] expectation operator (statistical average). Auto
correlation function is a follows.

R(+z,t~71)=E{x(t—-1)x(t + 1)} )

The Fourier transform of R ,- is;

W(t,w)= % j R +§,1 ~—§~)exp(—ja)t)dt (5)

W is known as Wiener distribution. If x,and x, are

background EEG and spike respectively, we can write,

E{Mx(n)]} = le (n)R.rl (n'rn) + Kr2 (n)RxZ (n: n)
©

where K , is instantaneous high frequency term and R
is instantaneous energy respectively If there is a spike in
the signal, second term is dominant . Otherwise this term
is zero E{x|.]} couid have been used for spike detection
and is a non negative term.

B. The smoothed non linear energy operator

E[.] can not be defined by time-averaging since the spikes
are not stationary. If suggests that a windowing has been
used in timc and frequency domains. Time-domain
windowing is defined as follows,

@,[x(n)] = p[x(n)) @ w(n) ™

where ® is convolution operator and w(n) is window
function respectively. This equation can be used for
estimation of E{@ (1)}. Window's type and width are
very important for reduction of interferences without

loss of time resolution.
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C- Spike detection by thresholding

The signa! which has a spike train needs to pass through
equations (2) and (7) and thresholding operation
successively Thresholding level must be optimised so
that loss of true peaks is minimum and number of
false detection will be in a reasonable interval. The
smoothed energy operator’s thresholding level can be
determined as follows,

r= c;—,gq:,[x(n)] ®

where C is scaling factor and is determined as

experimental manner.

D- Performance Indices
False- negative ratio (FN);
FN=(number of missed peaks / number of real peaks),
and
False positive ration (EP);
FP=(number of false detected peaks / number of real
peaks)
Signal to noise Ration (SNR);
SNR=10 log ,, (signal energy / noise energy)

IV- APPLICATIONS

A- Simulation studies

Firstly we made simulations for testing of algorithm. We
have generated a composite signal like a background.
EEG signal which has slowly changed as follows,

s(n) = Sin(wn) — Sin(2wn + @) + Sin(4wn)

where W =27/75 and @=7/2. Also, W is
randomly. Artificial EEG is shown in Figure 1.

il
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Figure 2. Artificizl background EEG.

A spike train d(n) with random amplitude and duration,
which has 10 spikes is generated. Finally general
artificial signal is,

x(n) = s(n)+d(n)+ v(n)
where V(n) is Gaussian distribution with unit variance

distribution. Calculated performance criteria as a result of
application are shown in Table 1.

YN(avrg.) 0,09
YP(avrg.) 0,06
SNR 12.76 dB

Table 1: Performance criteria for artificial signal

The wave shapes of some output signals coming from
different stages of algorithms are shown in Figure 2.
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()
Figure 2. (a) Spike train (b) artificial signal without
noise (c) noisy artificial signal (d) thresholded output
and spike train.

B- Real EEG applications

The aim of our study is detection of visual evoked
potentials (VEP). VEPs are smaller than background
EEG and they have short terms with high frequency
components. Therefore above algorithm could be used
for detection of VEPs Real EEGs coming from
data-base have been recorded by Pz electrodes from the
scull. They were sampled at 250 Hz and their recorded
duration stars at 1.5 sec. before stimulus and continues
until 2 sec. after stimulus. Complete EEG set has 100
responses each 375 samples.

In application, we have chosen a EEG set with 5
segments and  decimated by a factor 2 and then haven
not add any noise components. After removing d.c. level
we have implemented 15 trials so that algorithm could
be tested. The performance criteria are given as follow
in Table 2.

YN(avrg.) 0.08
YP(avre.) 0.3
Table 2: Performance criteria for real EEGs

application
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The Wave-forms of some output signals for real EEGs

application are shown in Figure 3.
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Figurc 3. a) database EEG with VEP, b) detected VEP
c) cnsemble average VEP
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V-CONCLUSION

In this study, firstly we have generated artificial signal
with 10 spikes. In this , sinusoids frequencies and
amplitudes and duration of spikes are  generated
randomly. They noisy signal is added to this artificial
signal. Also, we have chosen real EEG signal sets from
data base randomly. The performance indices are are
given Table.] and Tablc.2. False-negative ratios are
approximately similar for each group of applications,
while false positive ratios of real EEGs applications are
smaller than those of artificial signal applications..

VEPs coming from thresholding have been interpreted
according to localisation region. These results do not
give any idea of VEP’s wave shapes. We assumed
that VEPs arc generated periodically in data base
segments. Localisation of VEPs have been determined
with respect to ensemble averaged VEP coming from
data base segments.

References:

[1] C.A. Vaz and N.V Thakor, ”Adaptive Fourier
estimation of time-varying evoked potentials”, IEEE
Trans. Biomedical engineering , vol.36, No.4, April 1989

[2] O.Bertrand, J. Bohorquez and J. Pernier, “Time-
frequency digital flitering based on an invertible wavelet
transform:an application to evoked potantials” IEEE
Trans. Biomedical Engineering , vol.41, No.l, Jaunary
1994.

[31 E.A. Bartnik and K.J. Blinowska,"wavelets-new
method of cvoked potantial analysis” , Med. & Biol. Eng.
& Comput. 1992, 30, 125-126.

[4] N.T. Thakor, G. Xin—rong, S. Yi- Chun and DF.
Hanley “Multiresolution vawelet analysis of evoked
potentials”, IEEE Trans. Biomedical Engineering , vol.40,
No.11, Nowember 1993




"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

[51  S. Mukhopadhyay and G.C. Ray “A New
Interpretation of nonlineer energy operator and its efficacy
in spike detection ”, IEEE Trans. Biomedical Engincering
» vol.45, No.2, February 1998

(6] E.ABartnik, K.J. Bilynowska, and P. J. Durka,
“Single evoked potantial reconstruction by means of
wavelet transform”,Boil. Cybern. 67, 175-181,1992.






