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ABSTRACT

An adaptive implementation of a pilot-aided mini-
mum mean square error (MMSE) estimation approach
for multipath channel taps estimation is proposed in
this paper for OFDM systems. The approach requires
a convenient representation of the multipath channel
taps by the Karhunen-Loeve (KL) series expansion.
With the application of KL expansion, rather than
estimating correlated channel taps, uncorrelated se-
ries expansion coefficients are adaptively estimated.
The performance of the proposed approach is studied
through analytical and experimental results.

1. INTRODUCTION

Holding great promise to use the frequency resources
as efficiently as possible, OFDM is a strong candi-
date to provide substantial capacity enhancement for
future wireless systems [1]. OFDM is therefore cur-
rently being adopted and tested for many standards,
including terrestrial digital broadcasting (DAB and
DVB) in Europe, and high speed modems over Dig-
ital Subscriber Lines in the US. It has also been im-
plemented for broadband indoor wireless systems in-
cluding IEEE802.11a, MMAC and HIPERLAN/2.

An OFDM system operating over a wireless com-
munication channel effectively forms a number of par-
allel frequency nonselective fading channels thereby
reducing intersymbol interference (ISI) and obviating
the need for complex equalization thus greatly sim-
plifying channel estimation/equalization task. More-
over, OFDM is bandwidth efficient since the spectra
of the neighboring subchannels overlap, yet channels
can still be separated through the use of orthogonal-

ity of the carriers. Furthermore, its structure also
allows efficient hardware implementations using fast
Fourier transform (FFT) and polyphase filtering [1].

Although the structure of OFDM signalling avoids
ISI arising due to channel memory, fading multipath
channel still introduces random attenuations on each
tone. Furthermore, simple frequency domain equal-
ization, which divides the FFT output by the cor-
responding channel frequency response, does not as-
sure symbol recovery if the channel has nulls on some
subcarriers. Hence, accurate channel estimation tech-
nique have to be used to improve the performance of
the OFDM systems. Numerous pilot-aided channel
estimation methods for OFDM have been developed
[2, 3, 4]. In particular, a low-rank approximation is
applied to linear MMSE estimator by using the fre-
quency correlation of the channel [2, 4]. In [3], a
MMSE channel estimator, which makes full use of the
time and frequency correlation of the time-varying
dispersive channel was proposed. In [5], a maximum a
posteriori channel estimation technique was proposed
which estimates the complex channel parameters of
each subcarriers iteratively in frequency domain us-
ing the Expectation-Maximization(EM) algorithm.

Multipath fading channels have been studied ex-
tensively, and several stochastic models have been
developed to describe their variations [6]. In many
cases, the channel taps are modelled as general low-
pass stochastic processes (e.g., [7]), the statistics de-
pend on mobility parameters. A different approach
explicitly models the multipath channel taps by the
Karhunen-Loeve (KL) series representation. In the
case of KL series representation of stochastic pro-
cess, a convenient choice of orthogonal basis set is



one that makes the expansion coefficient random vari-
ables uncorrelated. When these orthogonal bases are
employed to expand the channel taps of the multi-
path channel, uncorrelated coefficients are indeed rep-
resent the multipath channel. Exploiting KL expan-
sion, the objective of this paper is to propose adaptive
solutions for the estimation of uncorrelated expansion
coefficients based on MMSE procedure.

2. SYSTEM MODEL

In order to eliminate ISI arising due to multipath
channel and preserve orthogonality of the subcarrier
frequencies (tones), conventional OFDM systems first
take the IFFT of data symbols and then insert redun-
dancy in the form of a Cyclic Prefix (CP) of length
larger than the channel order. CP is discarded at
the receiver and remaining part of the OFDM sym-
bol is FFT processed. Combination of IFFT and CP
at the transmitter with the FFT at the receiver con-
verts the frequency-selective channel to separate flat-
fading subchannnels. The block diagram in Fig. 1 de-

Figure 1: OFDM System Block Diagram

scribes the conventional OFDM system. We consider
an OFDM system with N subcarriers for the trans-
mission of K parallel data symbols. Thus, the infor-
mation stream X(n) is parsed into K-long blocks:

X(i) = [X(iK), X(iK + 1), · · · , X(iK + K − 1)]T

(1)
where i is the block index. The K × 1 symbol block
is then mapped to a (N +L)×1 vector by taking the
IFFT of x(i) and replicating the last L elements in
front of the CP as

s(i) = [s(iN), s(iN + 1), · · · , s(iN + N + L− 1)]T .
(2)

s(i) is serially transmitted over the channel. Let h(l)
be the equivalent discrete-time Lth order channel im-
pulse response, then the received signal sampled at
the chip rate can be written as

y(n) =
L−1∑

l=0

h(l)s(n− l) + η(n) (3)

where η(n) is filtered Additive Gaussian noise.

At the receiver, the CP of length L is removed first
and FFT is performed on the remaining N×1 vector.
Therefore, we can write the output of the FFT unit
in matrix form as

Y(i) = A(i)H + η(i) (4)

where A(i) is the diagonal matrix A(i) = diag (X(iK),
X(iK + 1), · · · , x(iK + K − 1)) and H is the channel
vector. The elements of H are values of the chan-
nel frequency response evaluated at the subcarriers.
Therefore, we can write H = [H(0), H(exp(j2π/K),
· · · ,H(exp(j2π(K − 1)/K)]T as

H = Fh (5)

where F is the FFT matrix with (m,n) entry exp(−j2π
mn/K) and h = [h(0), h(1), · · · , h(L − 1)]T is the
overall channel impulse.

Finally, η is an K × 1 zero-mean, i.i.d Gaussian
vector that models additive noise in the K sub-channels
(tones). We have

E[ηηH ] = σ2IK (6)

where IK represents an K × K identity matrix and
σ2 is the variance of the additive noise entering the
system.

Given noisy observations Y(i), our main objective
is to propose adaptive solutions for the estimation of
multipath channel parameters {h(0), h(1), · · ·h(L −
1)} in OFDM systems based on MMSE procedure. In
wireless mobile communications, channel variations
arise mainly due to multipath effect. Consequently,
channel variations evolve in a progressive fashion and
hence fit in some evolution model. It appears that
a basis expansion approach would be natural way of
modelling the channel variation.

Karhunen-Loeve (KL) series expansion have played
a prominent role in stochastic modelling. Prompted
by the general applicability of KL expansion, we con-
sider in this paper the parameters of h to be given
by a linear combination of orthonormal bases. Hence,
the channel estimation problem is equivalent to esti-
mating the coefficient of this expansion. We there-
fore focus on adaptive implementation of the MMSE
batch approach developed in [4]. But let us first
briefly revisit the method of [4].

3. MMSE ESTIMATION OF KL
COEFFICIENTS

A low-rank approximation to the frequency-domain
linear MMSE channel estimator is provided by [2]
to reduce the complexity of the estimator. Optimal
rank reduction is achieved in this approach by using
the singular value decomposition (SVD) of the chan-
nel attenuations covariance matrix CH of dimension



K ×K. In contrast, we adapted the MMSE estima-
tor for the estimation of multipath channel parame-
ters h that uses covariance matrix of dimension L×L
[4]. The proposed approach employs KL expansion of
multipath channel parameters and reduces the com-
plexity of the SVD used in eigendecomposition since
L is usually much less than K.

Assuming Kp pilot symbols are uniformly inserted
at known locations of the ith OFDM block, the Kp×
1 vector corresponding the DFT output at the pilot
locations becomes

Yp(i) = Ap(i)Fph + ηp(i) (7)

where Ap(i) is a diagonal matrix with pilot symbol
entries, Fp is an Kp×L FFT matrix generated based
on pilot indexes, and similarly ηp(i) is the under-
sampled noise vector.

For the estimation of h, the new linear signal
model is formed by premultiplying both sides of (7) by
AH

p (i) and assuming pilot symbols are taken from a
PSK constellation, then the new form of (7) becomes

AH
p (i)Yp(i) = Fph + AH

p (i)ηp(i)

Ỹp(i) = Fph + η̃p(i) (8)

where Ỹp(i) and η̃p(i) are related to Yp(i) and ηp(i)
by the linear transformation respectively. Further-
more, η̃p(i) is statistically equivalent to ηp(i). For
notational simplicity, we will omit block index i, since
we consider only one OFDM block in the sequel.

Equation (8) offers a Bayesian linear model rep-
resentation. Based on this representation, the min-
imum variance estimator for the time-domain chan-
nel vector h, i.e., conditional mean of h given Ỹp, is
obtained using MMSE estimator [4]. Thus, MMSE
estimate of h is given by [9]:

ĥMMSE = (FH
p Cη̃p

Fp + C−1

h )−1FH
p Cη̃p

Ỹp . (9)

Due to PSK pilot symbol assumption, Cη̃p(i) =

E
[
η̃p(i)η̃p(i)H

]
= σ2IKp , therefore we can express

(9) by

ĥMMSE = (FH
p Fp + σ2C−1

h )−1FH
p Ỹp . (10)

Under the assumption that uniformly spaced pi-
lot symbols are inserted with pilot spacing interval
∆ = K

Kp
, correspondingly, FH

p Fp reduces to FH
p Fp =

KpIL. Then according to (10) and FH
p Fp = KpIL,

we arrive at

ĥMMSE = (KpIL + σ2C−1

h )−1FH
p Ỹp . (11)

Since MMSE estimation still requires the inversion
of C−1

h , it therefore suffers from a high computa-
tional complexity. However, it is possible to reduce

complexity of the MMSE algorithm by diagonalizing
channel covariance matrix with an KL expansion.

If we form covariance matrix Ch as

Ch = ΨΛΨH (12)

where Λ = E{ggH}. The KL expansion is one where
Λ of (12) is a diagonal matrix (i.e., the coefficients
are uncorrelated). If Λ is diagonal, then (12) must
be eigendecomposition of Ch. The fact that only the
eigenvectors diagonalize Ch leads to the desirable
property that the KL coefficients are uncorrelated.
Furthermore, in the Gaussian case, the uncorrelat-
edness of the coefficients renders them independent
as well, providing additional simplicity. Thus, the
channel estimation problem in this application equiv-
alent to estimating the i.i.d. Gaussian vector g KL
expansion coefficients. Thus, the data model (8) is
rewritten as

Ỹp = FpΨg + η̃p (13)

which is also recognized as the Bayesian linear model.
We only need to specify the mean and covariance of
g to complete the Bayesian linear model description.
Recall that g ∼ N (0,Cg). As a result, the MMSE
estimator of g is

ĝMMSE = (KpIL + σ2C−1
g )−1ΨHFH

p Ỹp . (14)

Although the complexity of the MMSE estimator in
(11) is reduced by the application of KL expansion,
the computation of ĝMMSE still requires inverting
Cg and (KpIL + σ2C−1

g ). However, the complexity
of the ĝMMSE can be further reduced by deriving
optimal low-rank estimator [2].

Since Cg is a diagonal matrix with the singular
values σ2

g0
, σ2

g1
, · · · , σ2

gL−1
on its diagonal, it is a rank-

L matrix. Then a rank-r approximation to Cg is

C̃g = diag
{

σ2
g0

, σ2
g1

, · · · , σ2
gr−1

, 0, · · · , 0
}

. (15)

Since the trailing L− r variances
{
σ2

gl

}L−1

l=r
are small

compared with the leading r variances
{
σ2

gl

}r−1

l=0
, then

the trailing L − r variances are set to zero to pro-
duce the approximation. Actually, the best choice of
rank minimizes MSE |Cg− C̃g |2. However, typically
the pattern of eigenvalues for Cg splits the eigenvec-
tors into dominant and subdominant sets. Then the
choice of r is more or less obvious.

The optimal rank-r estimator of (14) now becomes

ĝMMSE = α−1ΨHFH
p Ỹp . (16)

where

α−1 = (KpIL + σ2C̃
−1

g )−1 (17)

= diag
{
σ2

g0
/(σ2

g0
Kp + σ2), · · · ,

σ2
gr−1

/(σ2
gr−1

Kp + σ2), 0, · · · , 0
}

.



Since our ultimate goal is to obtain MMSE estima-
tor for the channel frequency response H, from the
invariance property of the MMSE estimator, it fol-
lows that if ĝMMSE is the estimate of g, then the
corresponding estimate of H can be obtained as

ĤMMSE = FΨĝMMSE . (18)

On the other hand, (17) still involves the inversion of
C̃ which may be computationally prohibitive in sys-
tems with large L. In this paper, we therefore derive
adaptive algorithms for estimating g by minimizing
the MSE and avoiding the inversion of C̃g .

4. ADAPTIVE IMPLEMENTATION

Let’s turn our attention to the derivation of sequential
MMSE algorithm with low computational complexity.

To begin the algebraic derivation, let us use (8) to
write mth element of Ỹp as

Ỹp(m) = uH
p (m)g + η̃p(m) (19)

where uH
p (m) is the mth row of FpΨ and η̃p(m) is

the mth element of the noise vector η̃p.
If we find MMSE estimator of Ỹp(m + 1) based

on Ỹp(m), call it ̂̃Yp(m+1 | m), the prediction error

fm+1 = Ỹp(m + 1)− ̂̃Yp(m + 1 | m) will be orthogo-
nal to Ỹp(m). We can therefore project g onto each
vector separately and add the results, so that

ĝm+1 = ĝm + κm+1fm+1 (20)

= ĝm + κm+1

(
Ỹp(m + 1)− uH

p (m + 1)ĝm

)

where κm+1 is the gain factor given as

κm+1 =
Mmup(m + 1)

uH
p (m + 1)Mmup(m + 1) + σ2

η̃p

(21)

It can be seen that Mm = E[(g − ĝm) (g − ĝm)H ] is
needed in (21), hence update equation for the mini-
mum MSE matrix should also be given. If we substi-
tute (20) in Mm+1 = E[(g− ĝm+1)(g− ĝm+1)H ], we
obtain an update equation for Mm+1 as

Mm+1 = (I− κm+1uH
p (m + 1))Mm . (22)

Based on these results, the steps of the adaptive
MMSE estimator for g can be summarized as follows:

Initialization: Set the parameters to some ini-
tial value ĝ0 = 0,M0 = Cg

1: Compute the Gain κm+1 from (21).

2: Update the estimate of g from (20).

3: Update the minimum MSE matrix from (22).

4: Repeat Step 1-Step 3 until m = Kp − 1.

Some remarks and observations are now in order:

i. No matrix inversions are required.

ii. The batch MMSE estimator (16) requires FH
p Fp

to be equal to KpI which is satisfied only when
∆ = K

Kp
is an integer. However, the adaptive

version of (16) works as long as ∆ ≤ K
L .

5. SIMULATION RESULTS

OFDM system parameters used in simulations are
listed in the following table: MSE versus average SNR

Table 1: OFDM System Parameters

number of subchannels(K) 1024
pilot space(∆) 96, 112, 116
number of channel taps(L) 10
rms value of path delays (τrms) 3 sample

is shown in figure 2 for the range of pilot spacing in-
tervals ∆ 96, 112, and 116 respectively. It can be seen
from the figure 2 that, for the values of pilot spacing
∆ larger than K

L , the MSE performance decreases as
∆ increases. However, for the values of ∆ smaller
than K

L , the MSE perfromance is close to that of the
minimum Bayesian MSE result derived in [4] as

BMSE(ĝ) =
1
L

r−1∑

i=0

σ2
gi

1 + Kpσ2
gi

SNR
+

1
L

L−1∑

i=r

σ2
gi

.

(23)
For the convergence of the proposed adaptive algo-
rithm, MSE versus iteration is plotted for SNR=20dB
in the figure 3. It can be seen that the proposed al-
gorithm converge within 60 iterations.

6. CONCLUSIONS

The contribution of this paper lies in the derivation
of adaptive solution for channel estimation in OFDM
systems. Adaptive MMSE algorithm is developed
which avoids inversion of the channel covariance ma-
trix. Furthermore, the proposed adaptive algorithm
does not require K being integer multiple of Kp.
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