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Abstract

This particular essay expounds upon how one can foresee
and predict software reliability. There are two major
components that exist within a computer system: hardware
and software. The reliabilities between the two are
comparable because both are stochastic processes, which can
be described by probability distributions. With this said,
software reliability is the probability that will function
without failure in a given software and in a given
environment during a specified period of time. Thus, this is
why software reliability is a major and key factor in software
developmental processes and quality. However, one can spot
the difference between software reliability and hardware
reliability where it concerns the quality duration and the fact
that software reliability does not decrease its reliability over
time.

1. Introduction

Hardware and software have their faults, but they are
different in what these faults actually are. Hardware consists of
physical faults whereas the faults in software lay in the design of
the actual software itself. This makes it more complicated to
diagnose, classify, and or detect software faults within the
system. This is because, as a major characteristic of software
reliability, it tends to continuously change throughout and
during test periods. Software vendors need to be ensured that
their products are reliable before they are introduced to the
market. Software-Reliability-Stochastic- Models (SRSM) help
provide that information. SRSMs are designed to estimate or
predict the number of failures. By looking at the requirements of
program operation, one can see that 'failure' is the departure of
external results. The term failure is associated to the behavioral
aspects of the program.

In this particular industry, and even more specifically in
software critical system, it is very important to produce highly
reliable software, i.e. software with a low proportion of faults. A
long testing and fault correction process is required to be able to
produce reliable software. It is useful and time saving to use
Software Reliability Stochastic Models to predict the software
testing time, because this process can consume a large period of
time and a substantial amount of resources to achieve the
desired reliability results. The goal of this research summarizes
and explains a detailed mathematical investigation of Software-
Reliability-Stochastic- Models. This exert also presents how a
stochastic approach based on non- homogeneous Poisson
Process (NHPP) processes. A collection of Software Reliability
Stochastic Models is also described throughout the essay. It is
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required, that to be able to use such model reliability
prediction, that certain model parameters are using the failure
data during the initial testing period. Below are the techniques
used and described in this essay.

2. MATHEMATICAL BACKGROUND
2.1. Weibull-distribution

First, the Weibull-distribution will be explained. This
distribution is one of the most commonly used because of its
engineered reliability success of attaining various values of 3
(shape parameter). A great variety of data and life characteristics
can therefore be modeled, [1]. The flexibility of the Weibull
distribution is provided by the shape parameter. The Weibull
distribution can also model a wider variety of data, when the
value of the shape parameter is changed. The representation of
these time dependent failure probabilities F(t) and their
component are then made possible by this common distribution.
One can find that for this to able to happen, one must find it
necessary to posses the determined function parameters from
observed data. These also have a technical important meaning in
principle. It is then possible to determine whether one is dealing
with early, random, or aging failures from the provided data.
Failure frequency, number of all components and failure times
of the components is the preferred required data. The
independence of single component failures from each other can
be assumed by The Weibull distribution because of its
application of simple assumptions. Thus, the Weibull
distribution is just a simplification of the Exponential
distribution. Weibull distribution defines the probability of
failure as
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where t is the time, f is a shape parameter.
Weibull distribution's probability density function is given by
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If p=1, then the Weibull distribution is identical to the
exponential distribution, if =2, the Weibull distribution is
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identical to the Rayleigh distribution; if p is between 3 and 4 the
Weibull distribution approximates the normal distribution.

2.2. Exponential-distribution

In many applications as such in engineering, one can find the
exponential distribution to be very useful. For example, it can be
used to describe the life-time X of a transistor. The exponential
distribution is perhaps the most well known and probably the
most favorite probability for a reliability analysis of safety
systems. It is then possible with this distribution to represent the
time dependent probability F(t) of components, when it is
necessary to obtain observed data to determine X. The
exponential distribution defines the failure probability as

F(t)=1-¢*! 3)
respectively with failure density
—At
)= A-e Sfor t'20 )
0 otherwise

2.3. Poisson-distribution

The Poisson distribution is a special case of a Binomial
distribution, if the probability of occurrence p is very small and
the number of experiments n is very large. The conditions under
which the Poisson distribution holds are: Counts of rare events,
all events are independent and the average rate does not change
over the period of interest. The Poisson probability P(x) is given

by

X
P(X=x)=’u—-e_'u
x!

(5)

where g is the mean rate of occurrence and x is the
observed number of failure. Only one parameter & in a Poisson
distribution is needed to determine the probability of an event.
The Expected number E(x) is defined by the Poisson
distribution as

E(x)=ix-%~e_'u =,u-z
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The variance o> of the Poisson distribution is given by the
formula below, If 4 is the mean rate of successes occurring in a
given time interval or region in the Poisson distribution, [2]:

oo

o2 = j(x—E(x))2 () dv=p
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O

2.4. Binomial-distribution

The binomial distribution belongs to the discrete distribution.
It is explained with the following equation:
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k
P(XSk)=Z[f]~p" (1=p)™ ®)
i=0

where X is the random variable, n is the number of
experiments, k is the number of considered events or results and
p is the probability of occurrence. The following equations
define the variance o> and the expected value E(n, p) for the
Binomial-distribution.

o*(np)= Y (f=E®F - f@)=np-(=p) ()
x=0

E(nyp)=ix-f(x)=ix.[z),px g
x=0 x=0

A Specific feature of this distribution is that it can only
accept two values, success or failure. That means the component
failure is present (X =0) oris not present (X =1).

n-p (10)

3. Stochastic Methods to Predict the Software-
Reliability

The two most important types of distribution are Poisson and
binomial distribution. They can also be called “macro”-
distribution. Depending on how the failure quantity distribution
is specified, the approaches can then be classified into types.
Poisson type is the first type of the macro-distribution, [3]. The
Poisson types have a Poisson process over time. Good
approximation of occurrences in many real world events such as
telephone calls, orders to factory, breakdown of machinery and
arrivals on a queue are provided by the processes of the Poisson.
However, there are a number of random failures with the
Poisson-type models. Therefore each failure is considered a
random variable when removed. The Poisson type has some
important assumptions. Where the cumulative number of failure
experienced at time t is M(¢). At time =0, M(0)=0, there
are no failures experienced. The probability that a failure will
occur during (4,7 + A1) is:

P(t,1+ At)=5A(t)Ar + o(Ar) an

where * ﬂ.(t) is the failure intensity function in the software
and o(Atr) is the probability that more than one failure is
occurred . The probability o(Ar) is defined as:

lim 240 _
At—o0 At

0 (12)

The probability of exactly m failures that is occurring during
the time interval (0,7) for the Poisson type is:
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1)

P(M(t)=m) =] r(’;)]

(13)

where ®u(¢) is mean value function in the software. The
equation below shows the relationship between the failure rate

S A(¢) and the mean value function * u(z), [4]:

t
E[M(t)=m]=" u@t)= J.S A(s)ds
0

(14

where E[M (t) = m] is the expected value. The binomial type is

the second important macro-distribution. The binomial type
based off of several important assumptions. The fault that is
caused will be removed instantly whenever a software failure
occurs. There are u( inherent faults within the program. The

hazard rates * z(¢) for all faults are the same. The distribution of
the number of failures experienced by time ¢ is given by the
binomial type as:

P(M)=(ZOJ~(Fa(t))m (=Fy )™ (15)

where u( is a fixed number of faults and F, is the failure

probability function. The mean value function () is defined
as:

E[M(1) = m] = * (1) = ug F (1) (16)
The failure probability function is given as:
- IZ” (r)dt

F()y=1—e 0 (17

where z,(7) is the hazard rate.

3.1. Stochastic Approach based on Weibull model

The Weibull-model is one of the most widely used models
for hard- and software reliability. It is based on binomial type
(macro-distribution). There is also a special feature to this
model. Because of the great flexibility that expressed throughout
the model parameters, one can tell how each failure density can
be positive, negative, or even remain constant. From the start of
the observation time of the software, there are a fixed number
(N) of faults. The time to failure of fault a, is distributed as a

Weibull distribution with parameter S and & . The density
function f,(z) for the Weibull-model is defined as:

folty=p-6- P71 L5 ) (18)

where 3,6 >0 and 720 . The per-fault hazard rate z,(?) is
given by:
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za)=f-81P71 (19)

With the assistance of equation (19), it can be seen that if
0< <1, the per-fault hazard rate z,(¢) is decreasing with

respect to time. If the shape parameter equals 1, the per-fault
hazard rate z,(¢f) is constant. z,(¢) may also increase if the

p£>1 The
g )=(N=i+1)- B-6-(+1,4)P7 . with 0<f<1 s

presented in Fig. 1. Because of the power function component,
the effect on the hazard rate decreases with time.
The per fault distribution fi, f5,..., f,, are the number of

shape parameter conditional hazard rate

faults which are detected in each of the respective intervals
[(to,tl),(tl,tz Vyewrs i1 58i )suees (1 s 1n )] and therefore are not

dependent for any finite collection of times. One needs the fault
counts in each of testing intervals f; ’s for the determination of

the probability of failure. The completion time of each period is
also needed while the software is under observation f;’s. The

failure intensity function S/l(t) for the Weibull model is given
by:

SAO=N-B-5-151 .o~ (20)

where [ is shape parameter and N is a total number of
faults in the system by time ¢ =0. The distribution f,, becomes
the exponential if the shape parameter is S <1. The failure

intensity is Rayleigh distributed if the shape parameter is. Fig. 2
shows the failure intensity function with different shape
parameters.

With the help of Equation (16), the mean value function

S u(t) for the Weibull-model is defined as:
5.8
SuHy=N-(1-e0") @1

where ® () is the mean value function for the software.

T T
Hazard- Rate z(f)

z(t)

Fig. 1. Hazard rate function for the Weibull model
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Fig. 2. Failure intensity function *A(¢) for the Weibull model
with different shape parameters

Provided in the following formulas is the relationship

between the failure probability SF(r) and the software
reliability *R(z) :

R+ 5F(1)=1 o)

SR(t)=1- F() ="

Fig. 3 and 4 shows the mean value function ®z(¢) and the

software reliability *R(r) . The mean value function is non-
decreasing. The  Weibull-model

because * /(t — )= N .

is a finite model,

3.2. Stochastic Approach based on Poisson model
Real-world situations can be efficiently modeled by the
Poisson process. There is not a fixed number N of total faults
which are considered binomial for the Poisson type. However,
for the sake of using the Poisson type, the total failure is a
random variable with mean @y . Because it is more reflective of
the actual stress induced on the software system, this model is
practically based off of execution time 7. A Poisson random
variable with a mean of @ is the total number of faults

remaining in the program at =0, [5]. So whenever a software
failure occurs, the fault that caused it will be removed
instantaneously. The hazard rate z,(7) =@ for a single fault is

constant, see Fig. 5. Failures are independent. With the expected
number of failures experienced, one can see the failure intensity

function Sl(r) decreases exponentially. Following the Poisson
process, he cumulative number of failure by time 7, M(7) .

The mean value function * ,u(r) increases and reaches a finite
value , therefore making the exponential-model a finite model.
The expected number of failure occurrences for any time period
is proportional to the expected number of undetected faults at
that time is the mean value function. By assuming that the fault
correction rate is proportional to the hazard rate, the fault
removal process is then characterized on an average basis.
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Fig. 3. Mean value function ¢ (¢) for the Weibull model with
different shape parameters
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Fig. 4. Software reliability function *R(¢) for the Weibull
model with different shape parameters

This proportionality constant called a fault reduction factor
B.
The failure rate *A(z) is defined as

SMt) =0y - ®-B-e P BT (23)

where v is the number of failures, @ is the hazard rate and
B is the fault reduction factor. With help of equation (14), it
follows the mean value function * (z) according to:
—q)'B'T)

u@=vy-(l-e 24)

Figures 6 and 7 illustrate the relationship. The failure

intensity function S/l(r) is decreasing with execution time.

S,u(z') is a cumulative function, The mean value

function is non-decreasing.

Because
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Hazard rate ®z(f) for the execution time model

f= linear execution frequency
K= faut exposure ratio

.
W

Program hazard rate ®z(t)

=]

execution time t

Fig. 5. Program Hazard rate *z(¢) and the per-fault hazard rate

for single fault *z,, (r) = ®

Failure intensity fiction *A(t)

Sk o= inttial failure intensity
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'
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executiontime ¢

Fig. 6. Failure intensity functions *A(¢) in the software with
different reduction factor.
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Fig. 7. Mean value function * () in the software

By substituting Equation (24) into Equation (13), it gives the
cumulative probability distribution of time to the i th failure:

j=i

(25)

Therefore, the conditional reliability function SR(T,-|T,-_1)

after (i—1) failures are given by the following formula:

SR = FHoetormfietorsa} o0

4. Theory of Estimation

It should be taken into account that the parameters of
reliability models should be estimated. The primary importance
in software reliability prediction is the parameter estimation.
Maximum likelihood estimation (MLE) is one of the more
popular techniques for point estimation. We must obtain the
most probable values of the parameters for a given distribution,
because this is the basic idea behind MLE. This will best
describe the data that is provided. When the underlying
distributions of data are known or specified, then the general
technique that is used is the estimation method, [6]. The product
of the probability density function that is evaluated at each
sample point is the maximum likelihood function, L(X;y). By
maximizing L(X;y) with the respect to w , the maximum
likelihood estimator y can then be found. The log likelihood

function is given by the following equation:

InL(Xp) = D Inf(X;3) 27

i=l

5. Conclusions

In this paper, detailed overviews of two software reliability
approaches were provided. Different types, such as the Weibull
type which is based on binomial and the exponential typed
which is based on the Poisson model, were described,
illustrated, and explained. The paper also described the
assumptions of the different approaches. Different distributions,
which are also important for reliability analysis, were explained.
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