
A New Emigrant Creation Strategy for Parallel Artificial Bee Colony

Algorithm

Dervis Karaboga�, Selcuk Aslan�

��� Department of Computer Engineering, Erciyes University, Kayseri, Turkey
karaboga@erciyes.edu.tr, selcukaslan@erciyes.edu.tr

Abstract

Artificial Bee Colony algorithm inspired by the foraging be-

haviour of real honey bees is one of the most popular swarm

intelligence based optimization techniques. Like other pop-

ulation based evolutionary computation approaches, Arti-

ficial Bee Colony algorithm is intrinsically suitable for dis-

tributed architectures. However, determining which food

source should be chosen to distribute between sub-colonies

and communication topology applied still remain as an im-

portant problem for parallel implementations. In this study,

a new schema for increasing the quality of the distributed

source by combining best solutions is proposed. The pro-

posed model was adopted to ring migration topology and

its effectiveness is compared with the ring based topology

in which best food sources in each sub-populations are dis-

tributed and the original sequential counterpart. Compar-

ative results show that the proposed model increased the

quality of solutions and early convergence speed while pro-

tecting the speedup gain.

1. Introduction

In recent years, heuristic approaches have been developed

as an alternative to the traditional methods for numerous com-

plex numerical or combinatorial optimization problems needed

to be solved in a predetermined or reasonable amount of time

with the acceptable quality. Swarm intelligence based algo-

rithms which is a branch of natural inspired heuristic mainly

focus on the collective behaviours of insect colonies especially

their problem solving abilities and they have been applied to

the many real-world problems. Artificial Bee Colony (ABC) al-

gorithm proposed by Karaboga to solve numerical optimization

problems in 2005 is one of these swarm intelligence based algo-

rithms and tries to mimic natural behaviour of real honey bees

in food foraging [1-6].

Due to its robust structure and less control parameters

which are important to being determined before starting search

progress like crossover and mutation rate used by Genetic Al-

gorithm (GA), ABC algorithm has been successfully applied

a wide variety of numerical or combinatorial problems ranging

from the neural network training [7, 8], routing packages within

a wireless sensor networks [9, 10], aligning protein sequences

[11, 12] and predicting secondary structures of them [13] to im-

age quantization [14, 15] and so on [2-6]. In spite of all those

advantages, some modifications made in order to improve the

performance of the ABC algorithm and raise the speed of con-

vergence to globally optimal solution add extra execution time

to the standard implementation of the ABC algorithm and it still

requires a long execution time to find optimal or near optimal

solutions of problems that have many parameters to be opti-

mized and need large colony size [16-21].

It can be observed that many parts of the ABC algo-

rithm can be run in parallel. However, some dependencies on

the asynchronous workflow of the sequential ABC algorithm

should be changed by considering the quality of the final so-

lutions, convergence speed and efficiency of the used parallel

architectures. Driven by these mentioned large computational

demands and variations of parallelizable part of the ABC al-

gorithm, many researchers have developed parallel ABC al-

gorithms in order to increase the speedup on both shared and

distributed memory concepts. Parallelization approaches of

the ABC algorithm was roughly classified into two categories

based on the number of colonies. In the first category, multi-

ple colonies able to communicate with each other are used on

the same search space. Rather than utilizing multiple colonies,

using a single colony divided into sub-colonies and then dis-

tributed to the processors to work simultaneously is evaluated

in the second category.

Narasimhan presented a parallel version of the ABC algo-

rithm in which the entire colony of bees is divided equally then

distributed among selected processors so that each processor

tries to improve the local set of solutions and obtained satis-

fying results for both quality of final solutions and running per-

formance [22]. In that study, each sub-colony is placed in the

local memories of the related processors and the entire colony

is stored in the global shared memory [22]. At the end of each

cycle, improved solutions on each processor are copied into

the corresponding locations in the global shared memory in or-

der to maintain the relationship between bees in the sequential

ABC algorithm [22]. Banharnsakun et al. designed a parallel

ABC algorithm for distributed memory systems and improved

the scalability problems on the hardware [23]. After completing

a predetermined number of cycles, local best solution exchang-

ing process between two different sub-groups which are ran-

domly determined is carried out [23]. Luo et al. proposed a food

source sharing approach between compute nodes called ripple-

communication strategy and showed that ripple-communication

strategy increases the accuracy of the ABC algorithm on find-

ing the near best solution [24]. Subotic et al. used multiple bee

colony in a communication manner that each bee colony shares

their best-so-far solutions with all other colonies after prede-

termined number of cycle was completed [25, 26]. Parpinelli

et al. investigated parallel performance of the ABC algorithm

by adapting it for master-slave, multi-hive with migration and

hybrid hierarchical models [27]. A more detailed examination

of the parallel ABC algorithms has been conducted by Basturk

and Akay. They first introduced a synchronous ABC algorithm

and compared its performance with the asynchronous sequen-

tial counterpart on large-scale benchmark functions [28]. Sec-

ondly, a coarse-grained parallel model of the ABC algorithm

689

has been presented [29]. While their parallel implementation

of the ABC algorithm has been tested using high dimensional

numeric compute expensive problems with different number of

sub-populations, migration intervals and migration topologies

in the first part of the experimental studies, the second part was

devoted to the studies on training artificial neural network by

utilizing the propose parallel model [29].

Changing local best food source with a food source in the

topological neighbor sub-population is the common part of the

parallel ABC algorithms. This type of changing process is as

important as the established neighborhood relationship between

sub-colonies to maintain the population diversity. However,

changing process stops the parallel execution and increases the

total running time by adding the communication overhead. Be-

cause of this reason deciding which food source should be cho-

sen as an emigrant rather than the local best solution is sub-

stantial for both maintaining variety of the sub-populations and

performance gain compared to the sequential counterpart. In

the proposed parallel ABC algorithm, food sources that will

be swapped based on the used neighborhood topology is deter-

mined by combining the local best food source with a randomly

determined food source. The rest of the paper is organized as

follows. Section 2 provides a detailed description of the origi-

nal sequential ABC algorithm. The proposed approach for de-

termining the distributed food sources in each sub-population

is explained in Section 3. Experimental studies are reported in

Section 4. Finally, conclusion and future research lines are pro-

vided in Section 5.

2. Artificial Bee Colony Algorithm

Foraging behavior, memorizing and information sharing

characteristics of the real honey bees are the main motivations

used by the ABC algorithm [1]. ABC algorithm classifies the

bees in the colony by their role played in the minimal foraging

model as employed, onlooker and scout [1, 30, 31]. Employed

bees exploit a food source, carry information back to the hive

and then share this information with the onlooker bees. On-

looker bees wait in the hive and try to choose a food source by

means of the information shared by employed bees. The ten-

dency of the choosing a food source by onlookers is directly

proportional to the quality of the food sources [30, 31]. If a

food source is exploited or abandoned, an employed bee asso-

ciated with this source becomes a scout bee and searches envi-

ronment randomly to find a new food source. When using ABC

algorithm to solve an optimization problem, food sources in the

search space correspond to the possible solution of the problem

and the nectar amount of the food source represents the fitness

value of the solution[30, 31]. The main steps of the ABC algo-

rithm which reflects the cyclical relationship between employed

bees, onlooker bees and scout bees could be summarized below.

Algorithm 1 Fundamental Steps of the ABC Algorithm

1: Initialization:

2: Send all scout bees to the initial food sources.
3: Repeat

4: Employed Bee Phase:

5: Send all employed bees to new food sources.
6: Onlooker Bee Phase:

7: Send onlooker bees to food source using probability values.
8: Scout Bee Phase:

9: Send a scout bee for this abandoned food source.
10: Memorize best food source found so far.

11: Until Maximum cycle number is reached

2.1. Generating Initial Food Sources

ABC algorithm starts its optimization progress by randomly

generating an initial set of food sources which corresponds to

the possible solutions. In the ABC algorithm, for a numeri-

cal problem which needs to optimize � different parameters

identified by lower bound ����� and upper bound ����� , ���
where � � �� �� � � � � � parameter of a solution vector �� where

� � �� �� � � � � �� in the initial food source population consists

of �� solution vectors is formulated as given in Eq. 1 [30, 31].

��� � �
���
� � 	
����� �������� � �

���
� � (1)

2.2. Sending Employed and Onlooker Bees to Food Sources

Each food source is associated with only one artificial bee

and this bee attempts to produce a new food source depending

on the location information in its memory in ABC algorithm

[30, 31]. If the nectar quality of the new food source is better

than the known source, the bee will decide to forget the previ-

ous food source information and then keep the new food source

information in its mind, which could be considered as a greedy

selection mechanism, to utilize it for the next search cycle. The

mathematical expression used both the employed and onlooker

bees to produce a candidate food source in the neighborhood of

the memorized food source is given in;

�� � ��� � ������� � ���� (2)

��� is a random number between �� and �, � �

�� �� � � � � �� and � � �� �� � � � � � where �� and � denote

number of food sources and dimensions of the solutions vectors

respectively are randomly chosen indexes [30, 31]. Although,

the value of � is randomly determined, it should be noticed that

identical values are not assigned to � and � indices. �� is the

newly created ��� parameter for the solution vector � whose

parameters have the same value with the solution vector �� ex-

cept the randomly selected ��� parameter value [30, 31].

ABC algorithm accommodates the preference of a food

source by an onlooker bee with the nectar amount of that food

source. After employed bees have shared the information kept

in her minds on the dance area, an onlooker bee chooses a food

source depending on the probability value associated with that

food source. The probability of a food source which increases

with the nectar quality of the sources is calculated as below;

�� �
����������	

� ��������
(3)

where �������� is the fitness value of the solution represented

by the food source in the position � and �� is the number of

food sources [30, 31].

2.3. Abandoning Food Sources

In a robust search, exploitation and exploration progress.

If a food source cannot be improved through a predetermined

number of iterations, the employed bee associated with this

food source will become a scout bee and leave food source to

start a random search operation. The number of cycle used to

abandon a source is an important control parameter of the ABC

algorithm called as limit value. As in basic ABC, one food

source for which the limit value is exceed at most when com-

pared the other sources is abandoned and one employed bee

becomes scout bee for each cycle [30, 31].

690

3. Determining Distributed Food Source

In distributed architectures, dividing the whole population

into sub-populations and then assigning these sub-populations

to compute nodes are probably the most preferred parallel com-

puting model due to its suitability to implement and less com-

munication overhead. Each sub-population in different com-

pute nodes is evaluated independently and exchanges the infor-

mation about the selected individual with other sub-populations

based on the neighborhood topology. Neighborhood topologies

commonly used when determining the direction of the infor-

mation exchange are given In the Fig. 2 [29, 32, 33]. How-

ever, when a population based meta-heuristic is parallelized us-

ing this type of computation model, the speedup and perfor-

mance of the algorithm change with the selected neighborhood

topology, number of sub-colonies, communication interval be-

tween sub-colonies and types of information being distributed

between compute nodes [29].

(a) (b)

(c) (d)

Fig. 1. Commonly used migration topologies: (a)Ring, (b)Ring

1+2, (c)Torus, (d)Lattice

Although all of these topologies have some advantages, de-

ciding which solution to be exchanged should be main con-

cern for increasing performance of the algorithm without de-

teriorating the speedup and efficiency. In the vast majority

of these topologies, the worst solution or solutions found in a

sub-population is replaced with the best solution or solutions

of the topological neighbor sub-population or neighbor sub-

populations based on the used communication schema [23, 29].

Best solutions found in each sub-population might be seen as a

convenient migrants. But some situations, getting the best food

source from the neighbor could not be enough to reflect the

properties of its other solutions. Another limitation stemmed

from the utilization of the best food source is that if the lo-

cal best food source replaced with the worst food source of

the neighbor subgroup in the previous migration time can not

be improved until the next migration and then the same local

best food source is sent more than once to the neighbor sub-

group, population diversity is deteriorated. In other words, oc-

currence of multiple copies of the same local best food source

in the neighbor subgroup decreases the selection probability of

the other food sources due to their relatively high fitness values.

In the proposed model, the food source chosen as an emi-

grant between neighbor compute nodes is determined in a dif-

ferent manner that the best food source in the sub-population is

combined with randomly chosen food source by changing the

parameters of the best food source with the more efficient pa-

rameters taken from randomly chosen food source. By utilizing

this kind of cooperative schema, food sources to be exchanged

between neighbor sub-colonies carry more information about

situations of their colonies. Another important aspect of the pro-

posed model is that population diversity in each compute node

is protected more when compared with the local worst and local

best changing approach. If a population or colony consists of a

set of solution in which some of them are the same or close to

each other, probability of a major change that helps avoiding a

local minima decreases. The working schema of the coopera-

tive generation method and its integration in the parallel ABC

algorithm is given below.

Algorithm 2 Cooperative model based ABC algorithm

1: Initialization:

2: Assign values to ����� and ��� parameters.
3: Generate initial food sources (SN) by using Eq. 1.
4: Repeat

5: Employed Bee Phase:

6: Send employed bees to new food sources by using Eq. 2.
7: Onlooker Bee Phase:

8: Find probability values of each food source by using Eq. 3.
9: Determine selected food source using �� values.

10: Send selected onlooker bee to food source by using Eq. 2.
11: Scout Bee Phase:

12: Determine the abandoned food source using ����� values.
13: Send a scout bee for this abandoned food source.
14: if Migration period is reached then

15: 	������ � random food source in the compute node.
16: 	�	
�
 	��� � best food source in the compute node.
17: for � � ���� do

18: Change 	����� with 	�������� .
19: Calculate fitness values of new 	���.
20: if ��������	���� � ��������	�	
�� then

21: Change 	����� with 	�	
���

22: end if

23: end for

24: Send 	��� to the neighbor sub-population.
25: end if

26: Memorize best food source found so far.

27: Until Maximum cycle number is reached

4. Experimental Studies

Benchmark functions that we used in order to test the per-

formance of the standard, ring based parallel and ring based co-

operative ABC algorithms are given in Table 1. Sphere function

is a convex, unimodal function which has no local minimum

except the global one. Rastrigin function was constructed from

Sphere by adding a cosine modulator term to produce many lo-

cal minima. Griewank function has a product term and num-

ber of local optima increases with the dimensionality. Rosen-

brock valley is one of the most difficult optimization problem.

Its global optimum is inside a long, narrow, parabolic shaped

flat valley. For the experiments, the size of the bee colony was

chosen as 160. The dimension on each function was set 400 and

the value of ����� was taken as equal to the number of parame-

ters. The proposed method was implemented in C using Open-

MPI library. All of our tests have been performed on the cluster

which consist of compute nodes powered by Intel(R) i5 4670

with 2 GB of RAM. In all experiments, the maximum num-

ber of iterations was set 2000. Migration topology used in the

parallel implementations was ring and migration interval which

691

Table 1. Benchmark functions used in experiments

Function Range Formulation Global Min.

Sphere [-100, 100] ������ �
�

�

���

�
��
�

�
������ � �

Griewank [-600, 600] ������ �
�

����

��
�

���
��
�
�
�
�

��
�

���
���

�
���
�

��
� � ������ � �

Rosenbrock [-30, 30] ������ �
�

���
���

�
�������� � ��

�

��
� ��� � ���� ������ � �

Rastrigin [-5.12, 5.12] ������ �
�

�

���

�
��
�
� ����� ������ � ��

�
������ � �

Dixon-Price [-10, 10] ������ � ��� � ��� �
�

�

���

�
	
�
���

�
� ����

���
������ � �

Table 2. Comparison results of ABC and parallel implementations of ABC algorithm on two processors

Functions
ABC Ring-ABC Coop-Ring ABC

Mean Std Mean Std Mean Std

�� 3.229954e+03 2.473820e+03 3.266018e+04 6.084122e+03 1.034880e-01 1.150681e-01

�� 3.535124e+01 2.409915e+01 2.897337e+02 7.884458e+01 3.432151e-02 3.217872e-02

�� 1.807207e+05 1.491821e+05 4.000289e+07 2.388123e+07 1.313634e+03 5.630211e+02

�� 8.502711e+02 3.983880e+01 1.216464e+03 5.327817e+01 2.335463e+01 1.294404e+01

�� 1.044298e+04 1.038023e+04 3.446708e+06 2.190490e+06 5.391258e+02 9.035605e+01

Table 3. Comparison results of ABC and parallel implementations of ABC algorithm on four processors

Functions
ABC Ring-ABC Coop-Ring ABC

Mean Std Mean Std Mean Std

�� 3.229954e+03 2.473820e+03 4.598622e+04 9.963033e+03 8.648452e-01 8.373927e-01

�� 3.535124e+01 2.409915e+01 3.766516e+02 6.249915e+01 2.378765e-01 2.254262e-01

�� 1.807207e+05 1.491821e+05 9.187267e+07 4.842134e+07 1.398775e+03 2.151771e+02

�� 8.502711e+02 3.983880e+01 1.297987e+03 6.566077e+01 4.375327e+01 6.205766e+00

�� 1.044298e+04 1.038023e+04 1.250928e+07 7.023127e+06 5.350509e+02 7.779291e+01

Table 4. Speedup and efficiency for Ring and Cooperative Ring ABC algorithms on two processors

Functions
ABC Ring-ABC Coop-Ring ABC Speedups Efficiency

Time(s) Time(s) Time(s) ABC/Ring ABC/Coop-Ring Ring Coop-Ring

�� 0.335517 0.206929 0.230228 1.6214 1.4573 0,8107 0,7286

�� 9.541212 4.791809 4.951232 1.9912 1.9270 0,9956 0,9628

�� 0.742329 0.406193 0.456462 1.8275 1.6263 0,9137 0,8131

�� 4.167828 2.098474 2.137868 1.9861 1.9495 0,9930 0,9747

�� 2.708567 1.390291 1.566196 1.9482 1.7294 0,9741 0,8647

Table 5. Speedup and efficiency for Ring and Cooperative Ring ABC algorithms on four processors

Functions
ABC Ring-ABC Coop-Ring ABC Speedups Efficiency

Time(s) Time(s) Time(s) ABC/Ring ABC/Coop-Ring Ring Coop-Ring

�� 0.335517 0.106680 0.141885 3.1451 2.3647 0,7862 0,5911

�� 9.541212 2.399059 2.501293 3.9771 3.8145 0,9942 0,9536

�� 0.742329 0.204072 0.290406 3.6376 2.5562 0,9094 0,6390

�� 4.167828 1.073781 1.124635 3.8815 3.7059 0,9703 0,9264

�� 2.708567 0.693667 0.926330 3.9047 2.9240 0,9761 0,7310

692

6.0E+09

5.0E+09

4.0E+09

3.0E+09

2.0E+09

1.0E+09

0.0E+00
1 200 400 600 800 1000 1200 1400 1600 1800

(c)

O
b

je
ct

iv
e

F
u

n
ct

io
n

 V
al

u
es

Cycles

Standard ABC

Ring ABC

Coop-Ring ABC

..............

1.4E+06

1.2E+06

1.0E+06

8.0E+05

6.0E+05

4.0E+05

2.0E+05

0.0E+00

1 200 400 600 800 1000 1200 1400 1600 1800

(a)

O
b

je
ct

iv
e

F
u

n
ct

io
n

 V
al

u
es

Cycles

Standard ABC

Ring ABC

Coop-Ring ABC

..............

1.2E+04

1.0E+04

8.0E+03

6.0E+03

4.0E+03

2.0E+03

0.0E+00

3.0E+03

1 200 400 600 800 1000 1200 1400 1600 1800

(b)

O
b

je
ct

iv
e

F
u

n
ct

io
n

 V
al

u
es

Cycles

Standard ABC

Ring ABC

Coop-Ring ABC

..............

6.0E+08

5.0E+08

4.0E+08

3.0E+08

2.0E+08

1.0E+08

0.0E+00
1 200 400 600 800 1000 1200 1400 1600 1800

(d)

O
b

je
ct

iv
e

F
u

n
ct

io
n

 V
al

u
es

Cycles

Standard ABC

Ring ABC

Coop-Ring ABC

..............

Fig. 2. Convergence characteristics of the standard ABC al-

gorithm, Ring and Cooperative Ring ABC algorithms on four

processors for (a) Sphere, (b) Griewank, (c) Rosenbrock, (d)

Dixon-Price functions with 400 parameters

controls the frequency of the food source exchanging between

sub-populations was set 20. Each of the experiments was re-

peated 20 times with different random seeds and the mean best

values and standard deviation have been recorded.

From the simulation results given in the Table 2 and Table

3, it is clear that the mean best objective function values ob-

tained by proposed cooperative model outperform the standard

sequential ABC algorithm and ring schema based ABC algo-

rithm. By distributing cooperative best food source between

ring based neighbor sub-colonies, the chance of getting differ-

ent best food source which is more qualified than the previously

swapped has been increased. Another important contribution

with this approach is that diversity in the sub-colonies has been

maintained with the emigrant food sources that reflects the over-

all properties of the its original population. The effect of the

proposed schema on the convergence speed of the algorithm

could be seen in the Fig. 2. When these figures are examined,

all of them present a remarkable difference between Coop-Ring

ABC and the other ones.

Another comparison has been made on the speedup and ef-

ficiency values for the parallel ABC algorithms. Speedup and

efficiency are commonly used metrics to measure the perfor-

mance of the parallel algorithms. Speedup value is the ratio

of sequential execution time to parallel execution time and ef-

ficiency value is ration of speedup to the number of processors

used. Optimum value of the speedup metric is equal to the num-

ber of processors and optimum value of the efficiency is equal

to 1. In Table 4 and Table 5, average total running time for

20 different runs, speedup and efficiency values are given re-

spectively. In the calculation of the average running time for

the parallel ABC algorithms, total elapsed time for the slowest

processor has been used. Since the generation of cooperative

food source require a comparison between all parameters of the

local best food source and a randomly determined food source

for each sub-colony, the speedup and efficiency values of the

Coop-Ring ABC algorithms lag slightly behind the Ring ABC

algorithm especially for the functions that are less compute ex-

pensive.

5. Conclusion

In this paper, a new creation schema for the emigrant food

source between neighbor sub-colonies was presented and per-

formance effect of the proposed approach in terms of solution

quality, convergence speed and running time has been investi-

gated. Experimental studies showed that the new definition sig-

nificantly improved the quality of the final solutions and conver-

gence performance of the parallel ABC algorithm with the ring

migration topology when compared to the standard sequential

ABC algorithm and ring based parallel ABC algorithm in which

local best food sources for each sub-colony are chosen to being

exchanged with the local worst food sources. A future develop-

ment of this work can focus on adapting the proposed schema

to other migration topologies with different number of compute

nodes and migration periods and its implementation on combi-

natorial optimization problems that require more computational

time due to the necessity of the constraints.

6. References

[1] D. Karaboga, ”An idea based on bee swarm for numerical

optimization”, Tech. Rep., Kayseri, Turkiye, 2006.

[2] D. Karaboga, B. Akay, ”A survey: algorithms simulating

693

bee swarm intelligence”, Artif Intell Rev, vol. 31, no. 1,

pp: 68-85, 2009.

[3] J.C. Bansal, H. Sharma, S.S. Jadon, ”Artificial bee

colony algorithm: a survey”, Int J Advanced Intelligence

Paradigms, vol. 5, pp: 123-159, 2013.

[4] A.L. Bolaji, A.T. Khader, M.A. Al-betar, M.A. Awadallah,

”Artificial bee colony algorithm, its variants and applica-

tions: a survey”, Journal of Theoretical and Applied In-

formation Technology, vol. 47, no. 2, pp: 434-459, 2013.

[5] D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, ”A

comprehensive survey: artificial bee colony (ABC) algo-

rithm and application”, Artif Intell Rev, vol. 42, no. 1, pp:

21-57, 2014.

[6] B. Akay, D. Karaboga, ”A survey on the applications of

the artificial bee colony in signal, image and video pro-

cessing”, Signal, Image and Video P, vol. 9, pp: 967-990,

2015.

[7] D. Karaboga, B. Akay, ”Artificial bee colony algorithm

for training feed forward neural networks”, Signal Pro-

cessing and Communications Applications Conference

(SIU), Eskisehir, 2007 pp: 1-4.

[8] D. Karaoga, C. Ozturk, ”Neural network training by artifi-

cial bee colony algorithm on pattern classificiation”, Neu-

ral Network World, vol. 19, pp: 687-697, 2009.

[9] D. Karaboga, S. Okdem, C. Ozturk, ”Cluster based wire-

less sensor network routing using artificial bee colony al-

gorithm”, Wirel Netw, vol. 18, pp: 847-860, 2011.

[10] D. Karaboga, C. Ozturk, B. Gorkemli, ”Probabilistic dy-

namic deployment of wireless sensor networks by artifi-

cial bee colony algorithm”, Sensors, vol. 11, no. 6, pp:

6056-6065, 2011.

[11] X. Lei, J. Sun, X. Xu, L. Guo, ”Artificial bee colony al-

gorithm for solving multiple sequence alignment”, Bio-

Inspired Computing: Theories and Applications (BIC-

TA), Changsha, 2010, pp: 337-342.

[12] S. Aslan, C. Ozturk, ”Alignment of biological sequences

by discrete artificial bee colony algorithm”, Signal Pro-

cessing and Communications Applications Conference

(SIU), Malatya, 2015, pp: 678-681.

[13] C.M.V. Benitez, H.S. Lopes, ”Parallel artificial bee colony

approaches for protein structure prediction using the

3dhp-sc model”, Intelligence Distributed Computing IV

Studies in Computational Intelligence, Springer Berlin

Heidelberg, pp: 255-264, 2010.

[14] E. Hancer, C. Ozturk, D. Karaboga, ”Extraction of

brain tumors from mri images with artificial bee colony

based segmentation methodology”, Electrical and Elec-

tronics Engineering (ELECO) 8th International Confer-

ence, Bursa, 2013, pp: 516-520.

[15] C. Ozturk, E. Hancer, D. Karaboga, ”Color image quanti-

zation: a short review and an application with artificial bee

colony algorithm”, Informatica, vol. 25, no. 3, pp: 483-

503, 2014.

[16] D. Karaboga, B. Akay, ”A comparative study of artificial

bee colony algorithm”, Appl Math Comput, vol. 214, pp:

108-132, 2009.

[17] C. Zhang, D. Ouyang, J. Ning, ”An artificial bee colony

approach for clustering”, Expert Syst Appl, vol. 37, pp:

4761-4767, 2010.

[18] G. Zhu, S. Kwong, ”GBest-guided artificial bee colony al-

gorithm for numerical function optimization”, Appl Math

Comput, vol. 217, no. 7, pp: 3166-3173, 2010.

[19] D. Karaboga, B. Akay, ”A modified artificial bee colony

algorithm for constrained optimization problems”, ”Appl

Soft Comput, vol. 11, pp. 431-441, 2011.

[20] W. Gao, S. Liu, L. Huang, ”A global best artificial bee

colony algorithm for global optimization”, J Comput Appl

Math, vol. 236, pp: 2741-2753, 2012.

[21] D. Karaboga, B. Gorkemli, ”A quick artificial bee colony

(qABC) algorithm and its performance on optimization

problems”, Appl Soft Comput, vol. 23, pp: 227-238, 2014.

[22] H. Narasimhan, ”Parallel artificial bee colony (PABC) al-

gorithm”, World Congress on Nature and Biologically In-

spired Computing (NaBIC), 2009 World Congress, Coim-

batore, India, 2009, pp: 306-311.

[23] A. Banharnsakun, T. Achalakul, B. Sirinaovakul, ”Artifi-

cial bee colony algorithm on distributed environments”,

Nature and Biologically Inspired Computing (NaBIC),

2010 Second World Congress, Fukuoka, 2010, pp: 13-18.

[24] R. Luo, T. Pan, P. Tsai, J. Pan, ”Parallelized artificial

bee colony algorithm with ripple-communication strat-

egy”, Genetic and Evolutionary Computing (ICGEC)

2010 Fourth International Conference, Shenzen, 2010,

pp: 350-353.

[25] M. Subotic, M. Tuba, N. Stanarevic, ”Parallelization of

the artificial bee colony (ABC) algorithm”, Proceedings of

the 11th WSEAS international conference on neural net-

works and 11th WSEAS international conference on evo-

lutionary computing and 11th WSEAS international con-

ference on Fuzzy systems, 2010, pp: 191-196.

[26] M. Subotic, M. Tuba, N. Stanarevic, ”Different ap-

proaches in parallelization of the artificial bee colony al-

gorithm”, International Journal of Mathematical Models

and Methods in Applied Sciences, vol. 5, pp: 755-762,

2011.

[27] R.S. Parpinelli, C.M.V. Benitez, H.S. Lopes, ”Chap-

ter Handbook of Swarm Intelligence-Parallel approaches

for the artificial bee colony algorithm”, Springer-Verlag,

Berlin/Heidelberg, 2011.

[28] A. Basturk, R. Akay, ”Parallel implementation of syn-

chronous type artificial bee colony algorithm for global

optimization”, J Optim Theory Appl, vol. 155, pp: 1095-

1104, 2012.

[29] A. Basturk, R. Akay, ”Performance analysis of the coarse-

grained parallel model of the artificial bee colony algo-

rithm”, Inform Sciences, vol. 253, pp: 34-55, 2013.

[30] D. Karaboga, B. Akay, ”A powerful and efficient algo-

rithm for numerical function optimization: Artificial bee

colony (Abc) algorithm”, Journal of Global Optimization,

vol. 39, pp: 459-471, 2007.

[31] D. Karaboga, B. Akay, ”On the performance of artifi-

cial bee colony (Abc) algorithm”, Applied Soft Computing

Journal, vol. 8, pp: 687-697, 2008.

[32] A. Grama, G. Karypis, V. Kumar, A. Gupta, ”Introduction

to parallel computing”, Addison Wesley, Harlow, England,

2003.

[33] P. Pacheco, ”An Introduction to parallel Programming”,

Morgan Kaufmann, Burlington, USA, 2011.

694

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

