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Özet 
Jeoloji’de kayaç ince kesitlerin tanımlanması, petrojenez, 
alterasyon, doku, cevherleşme, kayaçlar ve yerkabuğu işlevleri 
hakkında bilgi almak için kritik öneme sahiptir. Geleneksel ince 
kesit tanımlama yöntemi uzman deneyimi, kişisel dikkat, ağır iş 
yükü, uzun tanımlama döngüsü ve doğru nicelleştirme 
yapılamaması gibi dezavantajlar göstermektedir Bu çalışma, 
foid içeren magmatik kayaçların mikroskobik ince kesit 
görüntülerinden mineral bileşimlerinin otomatik belirlenmesini 
ve QAP diyagramı üzerinden sınıflandırılmasını 
amaçlamaktadır. Süperpiksel tabanlı etiketleme aracı 
kullanılarak veri etiketleme süreci kolaylaştırılmış, ardından 
Segformer mimarisi ile kuvars, alkali feldispat ve plajiyoklaz 
mineralleri yüksek doğrulukla bölütlenmiştir. Segmentasyon 
sonuçları kullanılarak QAP diyagramı üzerinden kayaç türleri 
otomatik olarak tanımlanmıştır. Karşılaştırmalı deneylerde 
Segformer modeli, klasik derin öğrenme mimarilerine göre 
daha yüksek doğruluk (%94.56) ve ortalama IoU (%73.78) 
başarımı göstermiştir. Bu yaklaşım, jeolojik sınıflandırmalarda 
otomasyonu artırarak uzman müdahalesine olan ihtiyacı 
azaltmakta ve daha tutarlı sonuçlar elde edilmesini 
sağlamaktadır. 
 
Anahtar kelimeler: Kayaç sınıflandırması,  semantik 
bölütleme, QAP diyagramı, süperpiksel etiketleme 

Abstract 
The identification of geological thin sections is essential for 
understanding petrogenesis, alteration processes, texture, 
mineralization, rock types, and the structural evolution of the 
Earth’s crust. However, traditional thin-section analysis relies 
heavily on expert interpretation. This analysis is time-
consuming, subjective, and often lacks accurate quantitative 
assessment. This study proposes an automated framework for 
determining the mineral composition of thin-section images of 
igneous rocks and classifying them using the QAP diagram. A 
super-pixel based labeling tool was developed to streamline the 
annotation process, followed by high-accuracy semantic 
segmentation of quartz, alkali feldspar, and plagioclase 
minerals using the SegFormer architecture. Based on the 

segmentation outputs, rock types were automatically identified 
through QAP diagram analysis. Comparative experiments 
demonstrate that the SegFormer model outperforms 
conventional deep learning architectures, achieving an accuracy 
of 94.56% and a mean Intersection over Union (mIoU) of 
73.78%. The proposed approach enhances automation in 
geological classification, reduces dependence on expert 
intervention, and enables more consistent, objective, and 
reproducible results.  
 
Keywords: Rock classification, semantic segmentation, QAP 
diagram, superpixel labeling. 

1. Giriş 
Magmatik kayaçlar,  oluşum yerlerine, mineralojik ve 
kimyasal bileşimlerine ve renk indislerine göre 
sınıflandırılırlar. Magmatik kayaçların mineralojik sınıflaması, 
kuvars, alkali feldispat, plajiyoklaz ve feldispatoid 
minerallerine göre QAP-diyagramı üzerinde yapılırken, 
ultramafik mineraller dikkate alınmaz. Streckeisen [1] 
tarafından, Q (Kuvars-tridimit, kristobalit), A(Alkali 
feldispatlar-ortoklaz, sanidin, mikroklin), P(Plajiyoklaz), 
F(Feldispatoidler-lösit, nefelin, sodalit, analsim) ve M (Koyu 
renkli mineraller-mika, piroksen, olivin, amfibol) olarak 
sınıflandırılan diyagramdaki ilk dört mineral açık renklidir.  
Günümüzde, polarize, floresan, spektroskopi yöntemleri, 
taramalı elektron mikroskop ve katodolüminesans analizleri 
üzerinde ince kesit çalışmaları yapılmaktadır [2-5]. Geleneksel 
ince kesit tanımlamaları, görsel incelemeyle manuel olarak 
mikroskopta yapılır. Deneyimli uzman gerektiren zaman alıcı 
ve zahmetli bu süreci büyük veri ve yapay zekâ algoritmaları 
ile kısaltmak mümkündür [6-8]. Makina öğrenmesi ve derin 
öğrenme algoritmaları, kayaç sınıflamalarında güvenilir ve 
hızlı bir yöntem olarak kullanılmaktadır [8-10]. Derin 
öğrenme, görüntü tanıma ve bilgisayarlı görme teknolojilerinin 
gelişmesi , minerallerin ve kayaçların sınıflanmasını mümkün 
kılmaktadır [11]. İnce kesit görüntüsü kullanılarak yapılan 
çalışmalar arasında, Yu ve diğ. [12], Polat ve diğ. [2], Baykan 
ve Yılmaz [3], Pires de Lima ve Duarte [13] gibi araştırmacılar 
farklı kayaç türlerinde derin öğrenme yöntemlerini 
uygulamıştır. Yu ve diğ. [12] süperpiksel algoritmalarının, 
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makine öğrenmesi uygulamaları için eğitim veri setlerinin 
oluşturulması bakımından önemli bir adım olarak, sedimanter 
kayaç ince kesit görüntü veri setlerini kullanmıştır. 
Araştırmacılar, MultiSLIC’in birden fazla girdi görüntüsü 
verildiğinde mineral tane sınır uyumu sağlayan kompakt 
süperpikseller çıkarabildiğini göstermiştir. Test sonuçları, 
büyük ve karmaşık ince kesit görüntülerinin piksel düzeyinde 
doğru etiketlerle, geleneksel ve tamamen manuel çalışmalara 
kıyasla etiketleme aracı kullanılabileceğini belirlemiştir. Polat 
ve diğ. [2] plütonik kayaç ince kesitlerini kullandığı 
çalışmasında, geleneksel sinir ağları metodunu ile plütonik 
kayaçlarda kuvars, alkali feldispat ve plajiyoklaz gibi bazı 
mineralleri belirlemiştir. Bu üç minerali temel aldığı 
çalışmalarında araştırmacılar, %97.52’lik doğruluğa 
ulaşmıştır. Baykan ve Yılmaz [3], yapay sinir ağlarını klorit, 
muskovit, biyotit ve opak mineraller gibi polarizan ışıkta renkli 
özelliğe sahipmineraller için uygulamışlardır. Bu çalışmada, 
mikroskopta çapraz polarize ışıkta alınan kayaç ince kesit 
görüntülerinde %89,53’lük doğru sınıflandırma yapılmıştır. 
Pires de Lima ve Duarte [13] petrografik ince kesit 
görüntülerinin sınıflandırılması görevine ince ayar yapılarak, 
ImageNet üzerinde önceden eğitilmiş CNN modellerinin, daha 
fazla örnek sayısı ve de ImageNet’teki örnek çeşitliliğinin 
değerlendirmiş ve diğer veri setlerine kıyasla daha yüksek 
doğruluk verdiğini kanıtlamıştır.  
Jeoloji biliminde makine öğrenmesi ve derin öğrenme 
algoritmalarının kullanılması ile yapılandırılmış veriler [7], 
jeokimyasal anormallikler [2-5,13], potansiyel mineral 
kaynakları [14-15] ve paleontolojik verilerin yüksek 
doğrulukta değerlendirmesi sağlanmıştır. Jeolojide derin 
öğrenmede yaşanan gelişmelerle, görüntü tabanlı bilgisayarlı 
görme teknolojisi kullanılarak ince kesit görüntüleri 
sınıflandırılabilmektedir. Kaya ince kesit görüntülerinin 
sınıflandırılmasında, U-Net [16], Residual Network (ResNet) 
[10], Visual Geometry Group (VGG) [17], DenseNet [18], 
Faster R-CNN [18]  ve Inception-v3 [19] gibi evrişimli sinir 
ağı (CNN) modelleri kullanılmaktadır. Marmo ve diğ. [20], 
yapay sinir ağları (ANN)’ yi karbonat ince kesit görüntülerinde 
kullanmış ve %93.5’ lik bir başarı sağlamıştır. Patel ve 
diğerleri [21], probabilistik sinir ağlarını (PNN) farklı dokuda 
kireçtaşlarında dokuz histogram özelliği ile birlikte 
kullanmıştır. K-en yakın komşu algoritmaları ile dokuz farklı 
kayaç türünü sınıflandırmıştır. Bir başka çalışmada, Polat ve 
diğerleri [2] altı volkanik kayaç türünü otomatik sınıflamak 
için iki CNNs algoritmasını kullanmıştır. Karbonat kayaçların 
ince kesit görüntülerindeki üç özelliğe dört CNN modelini 
uygulamıştır. Kayaç ince kesitlerinde CNN ile mineral 
segmentasyonu kullanmıştır [22]. Bazı araştırmacılar, kayaç 
ince kesitlerinde kayacın beş farklı özelliğini ResNet0 sinir 
ağları kullanarak belirlemeye çalışmış ve başarı sağlamıştır 
[23]. Bazı çalışmalarda, üç kayaç türü (magmatik, metamorfik 
ve sedimanter) sınıflamasında SeNet’ e dayanarak CNN model 
özelliğini artırarak başarı sağlamış ve dataset üzerinde %90.89 
başarı elde etmiştir [24]. Chen ve diğ. [14] ResNet50 ve 
ResNet 101 sinir ağlarını kayaç ince kesitlerini tanımlamak 
için kullanmış ve %90.24-%91.63 performans sağlamıştır. 
Zhang ve diğerleri [16] Inception-V3 derin öğrenme modeli ve 
transfer derin öğrenme modelini kullanarak, granit, fillit ve 
breş türü kayaçları sınıflandırmıştır. Su ve diğ. [25], pirit, 
kalkopirit, galen ve sfalerit ince kesit görüntülerinde UNet 
modelini kullanmıştır. Veri artırımından sonra bu mineral 
türlerinde %90 başarı elde edilmiştir. Zhong ve diğ. [26], 
kumtaşı, oolitik kireçtaşı, litik kumtaşı, granit ve kuvarslı 
kumtaşlarında VGG modelini uygulamışlardır. Bu 

araştırmacılar veri setlerinde %82’ lik başarı yakalamışlardır. 
Visual Geometry Group ağları (VGG) [26], UNet [27], Yoğun 
iletişimsel sinir ağları ResNet [28], DenseNet [29], 
Inception+v3 [30] ve hızlı bölgesel iletişimsel sinir ağları 
(Faster RCNN) [31] gibi evrişimsel sinir ağlarına (CNN) gibi 
derin öğrenme modelleridir. Bu modeller, bilgisayar görmede 
mükemmel performans göstermiştir. 
Bu çalışmada mikroskop ile alınan ince kesit kayaç 
görüntülerinden kayaç türünün belirlenmesi için yeni bir 
yaklaşım önerilmektedir. Önerilen yaklaşım ile jeoloji 
uzmanlarının ince kesit kayaç görüntülerini hızlı bir şekilde 
etiketleyebilmesi için süperpiksel tabanlı bir arayüz 
geliştirilmiştir. Geliştirilen arayüz sayesinde özellikle 
etiketleme işleminde parametrelerin ayarlanabildiği hızlı ve 
hassas etiketleme işlemleri yapılabilecektir. Diğer bir katkı ise 
etiketlenen veriler üzerinde derin öğrenme tabanlı bölütleme 
yaklaşımları ile kayaç türünün belirlenmesidir. Bu amaçla 
UNEt, DeepLabv3+ ve segfromer gibi modeller eğitilmiştir. 
Modeller içerisinde en yüksek başarımı veren segfromer ile 
ince kesit kayaç görüntüsündeki kuvars, alkali feldispat, 
plajiyoklaz minerallerinin oranı bulunarak Quvars, Alkali 
feldispat, Plajiyoklaz feldispat (QAP) diyagramından kayaç 
türü belirlenmiştir. Önerilen yaklaşım jeologlar ve yer 
bilimciler için kullanışlı araçlar sunmaktadır. 

2. Materyal ve Metod 
Mikroskop ile alınan ince kesit kayaç görüntülerinden kayaç 
türünün belirlenmesi için önerilen yaklaşım üç aşamadan 
oluşmaktadır. İlk aşama veri setini etiketlemek için süperpiksel 
tabanlı bir yöntemden oluşmaktadır. Superpixels, renk veya 
doku gibi benzer özelliklere sahip pikselleri gruplayarak, 
görüntüyü daha büyük ve anlamlı bölgelere ayırır. Bu, görüntü 
işleme görevlerinin karmaşıklığını azaltır. Superpixel 
yöntemleri arasında SLIC (Basit Doğrusal Yinelemeli 
Kümeleme), verimliliği ve etkinliği ile öne çıkar. İkinci 
aşamada ise elde edilen maskelenmiş görüntüler ve orijinal 
görüntüler kullanılarak Segfromer yöntemi ile bölütleme işlemi 
yapılmaktadır. Daha sonra bölütlenmiş görüntüden kayaç 
türünün belirlenmesi için bir QAP diyagramı kullanılarak 
minerallerin oranına göre mineral türü belirlenmektedir. 
Önerilen yöntemin blok şeması Şekil 1’de gösterilmiştir. 
Şekil 1’de ilk olarak ince kesit kayaç görüntülerinin hızlı bir 
şekilde etiketlenmesi için SLIC süperpiksel yaklaşımı 
kullanılmaktadır. Geliştirilen ara yüz ile belirlenen klasördeki 
her görüntü tek tek alınarak belirlenen parametrelere göre 
etiketleme işlemi yapılmaktadır. Daha sonra etiketlenen 
görüntüler bir klasöre kaydedilmekte ve bir veri kümesi 
oluşturulmaktadır. Veri seti derin öğrenme tabanlı bölütleme 
algoritmasına verilerek model eğitilmekte ve bölütlenmiş 
görüntüler elde edilmektedir. Bölütlenmiş görüntüden QAP 
diyagramına göre kayaç türü belirlenebilmektedir. 

2.1. SLIC Süper piksel Algoritması ile Otomatik 
Etiketleme 

SLIC (Simple Linear Iterative Clustering), (x,y) konumunda 
bulunan bir pikselin CIELab (Commission Internationale de 
l’Éclairage) uzayındaki değeri ile konum bilgisinin kullanıldığı 
k-means temelli bir superpixel algoritmasıdır [30]. Bu 
algoritmanın uygulaması basit olup, tek parametre olarak k-
means parametresi süper piksel sayısını belirler. Bilgisayar 
bilimlerinde, görüntü işleme ve bilgisayarlı görü alanlarında 
çok yaygın olarak kullanılan CIELAB renk uzayında, renkli 
görüntü piksel renk uzayı sayısı ve piksellerin x ve y 
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koordinatları kullanılır. Bu 5B uzayda Oklid mesafesini 
kullanmak için uzamsal mesafeleri normalleştirmek gereklidir. 
Bunun sebebi, CIELAB uzayında iki renk arasında mümkün 
olan maksimum mesafe sınırlıyken,  
x-y düzlemindeki uzamsal mesafe görüntü boyutuna bağlı 
olmasıdır. Giriş görüntüsündeki piksel sayısı N olmak üzere 

giriş görüntüsünü bölütleyecek süper piksel sayısı K olacak 
şekilde, her bir k başlangıç küme merkezi aşağıda belirtildiği 
gibi başlatılır. 
 
 

Kayaç görüntüleri

Segment ve sıklık 
belirleme

SLIC yardımlı etiketleme

Veri Seti

Bölütleme Modeli

Piksel bazlı mineral 
hesaplama

Piksel bazlı mineral oran 
hesaplama

QAP diyagramında ince 
kesit türünü belirleme

 
Şekil 1: İnce kesit kayaç görüntüsünden kayaç türü belirleme için önerilen yaklaşım. 

 

𝐶𝐶𝑖𝑖 = [𝑙𝑙𝑖𝑖 𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖         ]                                 (1) 
 
Denklem (1)’deki küme merkezleri için eşit boyutlu süper 
pikseller üretmek için grid aralığı SS=√(N⁄k) ile hesaplanır. 
Herhangi bir süper pikselin uzamsal kapsamı yaklaşık olarak S² 
(bir süper pikselin yaklaşık alanı) olduğundan, bu küme 
merkeziyle ilişkilendirilen piksellerin süper pikselin etrafındaki 
2S×2S alanı içinde bulunduğu güvenli bir şekilde varsayılır. 
Şekil 2’de SLIC süperpiksel algoritmasının sözde kodu 
verilmiştir.  
 

Algoritma: SLIC  Supepiksel bölütleme 
S adımlar ile düzenli bir ızgara alanda küme merkezleri 𝑪𝑪𝒊𝒊 =
[𝒍𝒍𝒊𝒊 𝒂𝒂𝒊𝒊 𝒃𝒃𝒊𝒊 𝒙𝒙𝒊𝒊 𝒚𝒚𝒊𝒊] ‘nin başlatılması 
3x3 komşuluğunda en düşük gradyan pozisyona küme 
merkezlerinin taşınması 
L(i) =-1 // Her i pikseli için -1 etiketi atanır 
d(i)=∞// Her i pikseli için mesafe atanması 
Repeat 
            For her küme merkezi Ci için do 
                    For Ci civarında 2Sx2S bölgesindeki her i pikseli için 
                         Ci ile i arasındaki mesafeyi(D) hesapla (Denklem 2) 
                              If D<d(i) then 
                                      d(i)=D 
                                      L(i)=i 
                              Endif 
                    Endfor 
           Endfor 
           Yeni küme merkezlerini hesapla   
           Artık hata E’yi hesapla 
Until E≤ threshold 
 

Şekil 2: SLIC algoritması 
 
Şekil 2’deki SLIC algoritmasında 5 boyutlu öklid uzayında bir 
mesafe tanımlanması yapılması durumunda, farklı süper piksel 
boyutları için küme davranışlarında tutarsızlık olur. Büyük 
süper pikseller için, uzamsal mesafeler renk yakınlığından ağır 
basar ve uzamsal yakınlığa renkten daha fazla önem verir. Bu, 
görüntü sınırlarına iyi uymayan kompakt süper pikseller üretir. 
İki mesafeyi tek bir ölçümde birleştirmek için, renk 

yakınlığını(Nc) ve uzamsal yakınlığı(Ns) bir küme içindeki 
ilgili maksimum mesafelerine göre normalleştirmek gerekir.  
Buna göre D’ mesafesi aşağıdaki gibi hesaplanır. 
 

𝑑𝑑𝑐𝑐 = √(𝑙𝑙𝑗𝑗 − 𝑙𝑙𝑖𝑖)2 + (𝑎𝑎𝑗𝑗 − 𝑎𝑎𝑖𝑖)2 + (𝑏𝑏𝑗𝑗 − 𝑏𝑏𝑖𝑖)2         (2) 
𝑑𝑑𝑠𝑠 = √(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖)2                            (3) 

𝐷𝐷′ = √(𝑑𝑑𝑐𝑐
𝑁𝑁𝑐𝑐

)2 + (𝑑𝑑𝑠𝑠
𝑁𝑁𝑠𝑠

)2                                             (4)

         
Denklem(4)’te belirli bir küme içinde beklenen maksimum 
uzamsal mesafe (Ns), örnekleme aralığı S ile eşdeğer alınabilir. 
Fakat maksimum renk mesafesini belirlemek daha zordur. 
Maksimum renk mesafesindeki değişimi düşürmek için bir M 
sabit ile bölünebilir. Pratikte D mesafesi aşağıdaki gibi 
hesaplanır. 

𝐷𝐷 = √(𝐷𝐷𝑐𝑐
𝑀𝑀 )2 + (𝐷𝐷𝑠𝑠

𝑆𝑆 )2                                              (5) 
 
Superpixel algoritma yöntemi, daha hızlı ve gerçek zamanlı 
uygulamalar için uygun olması sayesinde verimli bir özellik 
sunar. Ayrıca, kompaktlığı sayesinde, nesne sınırlarına oldukça 
uyumlu superpixels üretebilir. Bu özellik, yüksek kalitede 
bölütleme sağlar. Boyut ve sayı kontrolü gibi istenilen 
süperpixels sayısının belirlenebilir olması ve bölütleme 
görevlerinde esneklik sağlar ve karmaşık görüntüler üzerinde 
kullanım kolaylığı getirir [16]. Bu çalışmada, süper piksel 
algoritması ile ince kesit görüntülerindeki farklı renklere sahip 
mineral sınırlarının tespiti için semantik bölütleme 
kullanılmıştır. 

2.2. Segformer Tabanlı Görüntü Bölütleme 

İnce kesit kayaç görüntülerinden kayaç türünün belirlenmesi 
için segfomer yöntemi ile bölütleme sağlanarak kayaçtaki 
Quvars, Alkali feldispat, Plajiyoklaz feldispat oranları 
hesaplanacaktır. Segformer transformer tabanlı anlamsal 
bölütleme sağlayan bir derin öğrenme modelidir. Fakat bu 
model Görsel dönüştürücüler gibi konumsal kodlamalara bağlı 
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olmadığından farklı çözünürlüklerdeki görüntüler üzerinde 
daha iyi sonuç verir. Bu modeldeki temel amaç düşük ağırlıklı 
bir yapıda kod çözücü ile basit v verimli bir semantik bölütleme 
sağlamaktır. Temel özellikleri olarak konumsal kodlama 
kullanmama, piramit görüntü dönüştürücüleri ile verimli bir öz 
dikkat mekanizması kullanma ve hafif kod çözücü olarak 
verilebilir. Şekil 3’te Segformer mimarisi verilmiştir. 
 

Örtüşen parça 
gömülmesi

Dönüştürücü 
blok 1

W/4xW/4xC1

Dönüştürücü 
blok 2

W/8xW/8xC2

Dönüştürücü 
blok 3

W/16xW/16xC3

Dönüştürücü 
blok 4

W/32xW/32xC4

Ko
dl

ay
ıcı

 b
lo

k

MLP Katmanı

MLP

W/4xW/4xC1

W
/4xW

/4x4C

W/4xW/4xNcls

Kod çözücü blok

 
Şekil 3: Segformer tabanlı semantik bölütleme mimarisi 
 
Şekil 3’te Segformer’ın kullandığı dönüştürücüler verimli bir 
öz dikkat mekanizması kullanmaktadır. Görsel 
dönüştürücülerde kullanılan matris çarpımındaki O(n2) olan 
hesaplama karmaşıklığı R kat azaltılır. Şekil 4’te kullanılan 
verimli öz dikkat mekanizması verilmiştir. 
 

Uzamsal 
azaltma

Çok-başlı dikkat

Q

K

V

(HiWi)xCi

Mix-FFN

Örtüşen parça 
birleştirme

XN  
Şekil 4: Verimli öz dikkat mekanizması 

 
Şekil 4’te verilen uzamsal azaltma sayesine K ve V değerleri 
bir R indirgeme oranı ile düşürülerek model karmaşıklığı 
azaltılmaktadır.  X girişi üzerinde adımlı bir evrişim uygulanır. 
Denklem (1)’de bu durum verilmiştir.  
 

𝑋𝑋′ = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠(𝑋𝑋)𝜖𝜖ℝ𝑁𝑁′𝑥𝑥𝑥𝑥                                                (1) 
  
Denklem (1)’de 𝑁𝑁′ = 𝐻𝐻.𝑊𝑊

𝑅𝑅2  ile verilmektedir. Elde edilen yeni 
X’ değeri K ve V’nin hesaplanmasında kullanılacaktır. Aşağıda 
bu değerlerin hesaplanması verilmiştir.  
 
𝑄𝑄 = 𝑋𝑋𝑊𝑊𝑄𝑄 ∈ ℝ𝑁𝑁𝑁𝑁𝑁𝑁                                                         (2)                  
𝐾𝐾 = 𝑋𝑋′𝑊𝑊𝐾𝐾 ∈ ℝ𝑁𝑁′𝑥𝑥𝑥𝑥                                                       (3)                                          
𝑉𝑉 = 𝑋𝑋′𝑊𝑊𝑉𝑉 ∈ ℝ𝑁𝑁′𝑥𝑥𝑥𝑥                                                       (4) 
   
Denklemlerden elde edilen değerlere göre yeni verimli öz 
dikkat mekanizması aşağıdaki gibi hesaplanır.  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑
)𝑉𝑉      (5) 

Denklem (5)’teki dikkat mekanizması hesaplama 
maliyetini O(N2)’den O(N.N’)2ye düşürmektedir. 
Modelde kullanılan Mix-FNN ise  iki doğrusal katmanı 
koruyarak 3x3 boyutlu bir derin evrişimden geçirir. Denklem 
(6)’da X girişi için bu yapı verilmiştir.  
 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋) = 𝑊𝑊2(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑊𝑊1𝑋𝑋))            (6) 
 
Denklem (6)’da W1 ve W2 doğrusal izdüşümleri 
göstermektedir. DWConv 3x3 boyutunda derinliksel evrişimi 
gösterir. En son aşamada ise bir çok katmanlı algılayıcı tabanlı 
bir kod çözücüden geçirilerek çıktı üretilmektedir. İnce kesit 
kayaç görüntüleri ve etiketlenmiş arka plan görüntüleri 
Segformer tabanlı modele verilerek modelin eğitimi 
yapılmaktadır. Ayrıca farklı modellerin aynı görüntüler 
üzerinde performans değerlendirmesini yapmak için 
DeepLabV3+ ve Unet modeli de kullanılmıştır.  

2.3. Kayaç Tanımlaması 

Magmatik kayaçların petrografik sınıflandırmasında özellikle 
plütonik kayaçlar için daha AQAP diyagramı oldukça 
kullanılan bir yöntemdir. Bu araç üçgensel bir sınıflandırma 
aracı olup kayacın hangi türe denk geldiğini hesaplamak için 
kullanılır. Diyagramı hesaplamak için kayacın içerdiği Kuvars 
(Q), Alkali feldispat (A) ve Plajiyoklaz feldispat (P)   
mineralleri kullanılır. Burada özellikle Alkali feldispat kayacın 
potasyum açısından zenginliğini ifade eder. Eğer plajiyoklaz 
feldispat yüksek olursa sodyum-kalsiyum içeren bir feldispat 
kayaç olduğu belirlenir. Şekil 5’te QAP diyagramı verilmiştir. 
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Şekil 5: QAP diyagramı[1]. 

 
Şekil 5’teki QAP diyagramında bu üç bileşenin toplamı 

%100 olacak şekilde normalize edilir ve her kayaç bileşeni 
diyagramda bir nokta olarak temsil edilir. Böylece mineralojik 
içeriğe göre belirli alanlara düşürülmesi sağlanır. Eğer yüksek 
kuvars var ise A ve P oranları dengede olup granit bir kayaç 
olduğu ifade edilir. Eğer Plajiyoklaz oranı yüksek ise kayacın 
tonalit olduğu ifade edilir. Kuvars oranı çok düşük olan 
feldispatça zengin kayaçlar ise syenit ve monzonit olarak ifade 
edilir.  Kayaç oranı %90’dan fazla olan kayaçlar ise 
monomineralik kayaçlar olup Quartzolite olarak adlandırılır. 
QAP diyagramı, IUGS (International Union of Geological 

Sciences) tarafından önerilen standart sınıflandırma 
sistemlerine dayanır ve özellikle ince kesit analizleri ile yapılan 
nokta sayımı (modal analiz) sonuçlarının değerlendirilmesinde 
kullanılır. Bu yöntem sayesinde farklı magmatik kayaç türleri 
arasında kesin ve tutarlı bir sınıflandırma yapılabilir. Bu 
çalışmada QAP diyagramını oluşturmak ve kayaç türünü 
otomatik belirlemek için bir yaklaşım önerilmiştir. İlk olarak 
bölütlenmiş görüntüden elde edilen Q, A ve P değerleri 
normalize edilmektedir. Daha sonra Şekil 6’daki algoritma ile 
kayaç türü belirlenmektedir. 

 

Başla

Bölütleme sonucu elde edilen A,P,Q 
oranarını al

total=A+P+Q
Q_norm=(Q/tota)*100
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H
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H
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Şekil 6: Bölütlenmiş görüntüden kayaç türü belirleme yaklaşımı 

 
Şekil 6’da verilen algoritma ile bölütlenmiş görüntüden 

kayaç türü belirlenmekte ve daha sonra kayacın türü QAP 
diyagramında da gösterilmektedir. 
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2.4. Değerlendirme metrikleri 

Bu çalışmada, ince kesit kayaç görüntüleri üzerinde kuvars, 
alkali feldispat ve plajiyoklaz feldispat minerallerini piksel 
düzeyinde ayırt etmek amacıyla semantik bölütleme 
gerçekleştirilmiştir. Bu minerallerin mikroskobik yapılarındaki 
görsel benzerlikler ve sınır belirsizlikleri, bölütleme problemini 
oldukça karmaşık hale getirmektedir. Bu nedenle, model 
performansını değerlendirmek için hem genel doğruluk hem de 
sınıf bazlı benzerlik ölçütü olan Ortalama Intersection over 
Union (mIoU) metrikleri kullanılmıştır. Doğruluk, modelin tüm 
piksel tahminleri içerisinden kaç tanesinin doğru 
sınıflandırıldığını gösterir. Ancak, sınıflar arasında dengesizlik 
mevcutsa (örneğin, kuvars çok daha baskınsa), bu metrik 
yanıltıcı olabilir. Doğruluk, doğru tahmin edilen piksel 
sayısının toplam piksel sayısına oranı olarak tanımlanmakta 
olup Denklem (7)’de gösterildiği gibi hesaplanmaktadır. 
 
          𝐷𝐷𝐷𝐷ğ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐷𝐷𝐷𝐷ğ𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠       (7) 
 
Intersection over Union (IoU), tahmin edilen segmentler ile 
gerçek segmentler arasındaki örtüşme oranını ölçen bir 
metriktir. Bu ölçüt her bir sınıf için ayrı ayrı hesaplanabilmekte 
olup tahmin edilen (P) ve gerçek (G) segmentlerin kesişiminin 
birleşimlerine oranı olarak Denklem (8)’de ifade edildiği 
şekilde tanımlanmaktadır.  
 
𝐼𝐼𝐼𝐼𝑈𝑈 = |𝑃𝑃∩𝐺𝐺|

|𝑃𝑃∪𝐺𝐺|                                                                (8) 
 
Mean Intersection over Union (mIoU) ise IoU değerlerinin tüm 
sınıflar üzerindeki ortalamasını temsil etmekte ve bölütleme 
modelinin sınıflar arasındaki genel performansını dengeleyerek 
değerlendirmektedir. mIoU, her sınıf için hesaplanan doğru 
pozitif (TP), yanlış pozitif (FP) ve yanlış negatif (FN) değerleri 
kullanılarak Denklem (9)’da verilen formül ile 
hesaplanmaktadır. 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝑁𝑁

∑ 𝑇𝑇𝑇𝑇𝑖𝑖
𝑇𝑇𝑇𝑇𝑖𝑖+𝐹𝐹𝐹𝐹𝑖𝑖+𝐹𝐹𝐹𝐹𝑖𝑖

𝑁𝑁
𝑖𝑖=1  (9) 

Burada N sınıf sayısını, TPi, FPi ve FNi ise sırasıyla i. 
sınıfa ait doğru pozitif, yanlış pozitif ve yanlış negatif 
piksel sayılarını ifade etmektedir. 

3. Deneysel Sonuçlar 
Veri seti için Fırat Üniversitesi jeoloji mühendisliği 
laboratuvarında hazırlanan kayaç ince kesitler kullanılmıştır. 
Herhangi bir kayıplı sıkıştırma formatı kullanılmamıştır. 
Veriler, PNG formatında tutulmuş olup polarizan araştırma 
mikroskobunda (Nikon marka) çapraz polarize ışık (XPL) ve 
tek polarize ışık (PPL) kullanılarak ince kesit görüntüleri 
fotoğraflanmıştır.  
.Feldispatlar, magmatik kayaçların ana bileşimini oluştururken 
(>%50), feldispatoidli kayaçlar sınırlıdır. Feldispatoidler, silis 
içermeyen eriyiklerden itibaren oluşur ve feldispatların yerini, 
lösit (KalSi2O6) ve nefelin (NaAlSiO4) gibi feldispatoid 
mineraleri alır. Sodalit, lazurit, hauyn, nosean ve petalit ise 
diğer feldispatoid kayaçlarıdır. Feldispatoid minerallerden 
birini veya birkaçını birarada bulunduran kayaca ise foid- denir 
(Foid-monzonit gibi). Foid- veya fonolit kayaçlarında 
feldispatoidler, ya alkali feldispatla veya plajiyoklazla (anortit) 
birlikte bulunabilir.   Hazırlanan veri seti 2927 eğitim ve 737 
doğrulama olmak üzere toplam 3644 görüntüden oluşmaktadır. 
Verileri etiketlemek için SLIC süperpiksel algoritmasını 
kullanan bir arayüz hazırlanmıştır. SLIC algoritması, scikit-
image kütüphanesindeki skimage- segmentation-slic 
fonksiyonu kullanılarak uygulanmıştır. Algoritma, GUI'nin 
hesaplama sırasında duyarlı kalmasını için ayrı bir iş 
parçacığında çalıştırılır. Şekil 7’de SLIC ile etiketleme için 
kullanılan arayüz verilmiştir.   
 

 

 
Şekil 7: GUI tabanlı etiketleme aracının ekran görüntüsü. 
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GUI, sol panel ve sağ panel olarak ikiye ayrılır. Görüntüleri 
yükleme, SLIC parametrelerini ayarlama ve etiketleme için 
sınıf seçme kontrolleri sol panelde, orijinal görüntüyü ve 
karşılık gelen bölütleme maskesi ise sağ panelde yeralır. GUI’ 
nin temel öğeleri; Görüntü listesi, SLIC parametre kontrolleri, 
Sınıf seçme açılır menüsü, Yakınlaştırma kaydırıcısı ve Maske 
görünümü geçişidir. Görüntü Listesi, yüklenen görüntülerin 
listesini gösterir ve kullanıcılar arasında geçiş yapmayı 
sağlarken, her bir görüntüde dosya adı ve dosya boyutu yer alır. 
Bu özellik, istenilen herhangi bir görüntünün kolayca 
bulunmasına imkân verir. SLIC Parametre Kontrolleri, 
süperpixel sayısını (n_segments) ve kompaktlığı ayarlamak için 
kaydırıcı olup, kullanıcıların superpixel oluşturma sürecini 
ihtiyaçlarına göre hassas bir şekilde ayarlar. Sınıf Seçme Açılır 
Menüsü, etiketleme için sınıf seçmeyi sağlarken, araç, birden 
fazla sınıfı destekler. Kullanıcılar gerektiğinde sınıf ekleyebilir, 
düzenleyebilir veya silebilir. Yakınlaştırma Kaydırıcısı, 
kullanıcıların görüntüyü yakınlaştırmasını ve uzaklaştırmasını 
sağlayan bu bölüm, yüksek çözünürlükte görüntüler veya küçük 
nesneler için oldukça avantajlıdır. Son olarak, Maske 
Görünümü Geçişi, kullanıcıların bölütleme maskesinin görünür 
veya gizli olmasını sağlar. Dolayısıyla, kullanıcıların orijinal 
görüntüyü etiketlenmiş maske ile karşılaştırmasına olanak 
tanırken doğru etiketleme yapılması mümkün olur. Şekil 8’de 
veri setinden bazı orijinal görüntüler ve etiketlenmiş veriler 
verilmiştir. 
 

    

    
Şekil 8: Veri setinden dört örnek ve etiketlenmiş örnekleri 

 
Etiketleme işleminden sonra bölütleme işlemi yapılacaktır. Bu 
amaçla hem klasik evrişimsel sinir ağı tabanlı DeeplabV3+ ile 
Unet modeli kullanılmış hem de dönüştürücü tabanlı Segformer 
modeli kullanılmıştır. Eğitim için kullanılan parametreler Tablo 
1’de verilmiştir. 
 

Tablo 1: Bölütleme modelleri için eğitim parametreleri 
Parametre Değer 
Veri boyutu 512x512 
Sınıf sayısı 4 
Parti boyutu 4 

Öğrenme oranı 6e-5 
Ağırlık düşürme 0.01 

Optimizasyon algoritması AdamW 
Adım sayısı 50 

 
Her bir model bu metriklere göre eğitilerek eğitim ve 
doğrulama için model grafikleri elde edilmiştir. Şekil 9’da 

eğitim ve doğrulama için doğruluk ve MIoU grafikleri 
verilmiştir. 

 
(a) U-Net 

 
(b) DeepLabV3+ 

 
(c) Segformer 

Şekil 9:  Farklı modeller için eğitim grafikleri 
 
Şekil 9’da elde edilen eğitim grafikleri Segformer’ın hem 
eğitim hem de doğrulama için diğer iki modelden daha başarılı 
sonuçlar elde ettiğini göstermektedir. Her üç model için elde 
edilen sonuçlar Tablo 2’de verilmiştir. 
 

Tablo 2: Üç model için eğitim ve doğrulama aşamalarındaki 
metrikler 

Metrik Aşama Unet DeepLabV3+ Segformer 
Doğruluk Eğitim 94.83 95.90 97.00 

MIoU 80.00 86.39 87.08 
Doğruluk Doğrulama 88.10 90.45 94.56 

MIoU 64.06 66.93 73.78 

 
Tablo 2’de Segformer’ın bütün metriklerde diğer iki modele 
göre daha iyi sonuç verdiği görülmektedir. Ayrıca önerilen 
modellerin bölütleme sonuçları Şekil 10’da gösterilmiştir. Şekil 
10’un Görüntü tarafında, gerçek kayaç ince kesitlerinden elde 
edilmiş bir mikroskop görüntüsü bulunur. Bu görüntüde 
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magmatik kayaç örneğinden hazırlanan kayaç ince kesitinde 
plajiyoklas, alkali feldispat ve kuvars mineralleri yaygındır. 
Görüntüdende izleneceği gibi her mineralin kendine özgü bir 
renk ve morfolojik yapısı vardır. Bu mineralleri seçebilmek için 
eğitilen modeller, mineral tespiti bakımından ve model başarısı 
açısından kritik öneme sahiptir. Çalışmada kullanılan 
SegFormer modeli, DeepLabV3+ ve U-Net modellerine kıyasla 
daha yüksek doğruluk değerleri elde etmiş olup, bölütleme 

sonuçları bakımından Ground truth ile neredeyse aynı düzeyde 
bir performans sergilemiştir. Ancak SegFormer daha 
başarılıdır. Özellikle küçük parçaların bölütlenmesi açısından 
Segformer modeli DeepLabV3+ ve U-net’e kıyasla şekil 10 
üzerinde bulunan 1. ve 4. Örnek resimlerde net olarak 
gösterilmiştir.  
 

Görüntü Ground truth DeepLabV3+ Unet Segformer 

     

     

     

     

     
 
Şekil 10: Farklı görüntüler üzerinde UNet, DeepLabV3+ ve Segformer modelinin bölütleme sonuçları 
 
    Şekil 10’da verilen bölütleme sonuçları, UNet, DeepLabV3+ 
ve Segformer modellerinin mineral sınıflandırma başarısını 
karşılaştırmalı olarak görselleştirmektedir. Görseller 
incelendiğinde, Segformer modelinin hem sınıf ayrımı hem de 
alan bütünlüğü açısından en tutarlı sonuçları verdiği 
görülmektedir. Özellikle kuvars, plajiyoklaz ve alkali feldspat 
gibi minerallerin sınırlarını net bir şekilde ayırt edebilmesi ile 
bu modelin ince detaylardaki başarısı görülmektedir. UNet 
modeli belirli örneklerde başarılı olsa da sınırlarda bulanıklık 

ve detay kaybı yaşarken, DeepLabV3+ modelinde bazı 
sınıfların fazla genelleştirildiği ve sınırların bozulduğu 
gözlemlenmiştir. Genel olarak, Segformer modeli, ince kesit 
görüntülerinde daha doğru ve dengeli segmentasyon 
performansı sergilemiştir. Şekil 11'de, Segformer modeli ile 
elde edilen segmentasyon maskelerine karşılık gelen QAP 
diyagramları kullanılarak kayaç tipi sınıflandırması 
gerçekleştirilmiştir. 
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Şekil 11:Segformer ile bölütleme sonucu elde edilen görüntüden QAp diyagramından kayaç tipi belirleme 

 
 
Şekil 11’de her bir örnekte, tahmin maskesi üzerinde kuvars 
(mavi), plajiyoklaz (yeşil) ve alkali feldspat (kırmızı) oranları 
hesaplanarak QAP üçgeninde gösterilmiştir. İlk örnekte yoğun 
plajiyoklaz içeriği nedeniyle örnek Tonalite olarak 
sınıflandırılmıştır. İkinci örnekte yüksek kuvars oranı ve 
dengeli A/P dağılımı ile Granodiorit, üçüncü örnekte ise kuvars 
oranı düşük, alkali feldspat oranı baskın olduğundan Monzonit 
olarak belirlenmiştir. Bu analiz, segmentasyon sonucunun 
sadece görsel değil, aynı zamanda jeopetrografik yorumlara da 
olanak sağlayacak düzeyde nitelikli olduğunu göstermektedir. 

4.  Sonuçlar 

Bu çalışmada, ince kesit kayaç görüntülerinden kuvars, alkali 
feldispat ve plajiyoklaz minerallerinin semantik bölütlemesi 
gerçekleştirilerek QAP diyagramı aracılığıyla otomatik kayaç 
türü tespiti yapılmıştır. Karşılaştırmalı deneysel sonuçlar, 
transformer tabanlı Segformer mimarisinin, klasik evrişimsel 
sinir ağı tabanlı DeepLabV3+ ve UNet modellerine kıyasla 
doğruluk ve mIoU metriklerinde üstün performans gösterdiğini 
ortaya koymuştur. Segmentasyon başarımının yüksek olması, 
özellikle mikroskobik mineral sınırlarının doğru şekilde 
ayrıştırılması açısından kritik önem taşımaktadır. Ayrıca, elde 
edilen segmentasyon maskelerinin QAP diyagramı ile entegre 

[kullanımı, sadece sınıflandırma değil, aynı zamanda 
jeopetrografik analiz açısından da değerli ve güvenilir bir 
çıkarım sağlamıştır. Bu bağlamda, önerilen yöntem, hem 
etiketleme sürecindeki verimlilik hem de bölütleme ve 
sınıflandırmadaki doğruluk açısından literatüre önemli bir katkı 
sunmaktadır. 
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