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ABSTRACT 
In this study, the relation between the parameters of a  
quarter-plane causal 2-D ARMA process and their  
equivalent 2-D AR process is considered. Based on this 
relationship, a new algorithm is proposed for determining 
the 2-D ARMA model parameters from the coefficients of 
the 2-D equivalent AR model obtained by applying 2-D 
MYW equation to the process under consideration.  
 

I. INTRODUCTION 
Parametric representations of two-dimensional (2-D) 
random fields are useful in many applications such as 
image synthesis, classification, and image modeling [1], 
[2]. From this viewpoint, so many parameter and spectral 
estimation algorithms based on two-dimensional 
autoregressive (2-D AR) models have been widely 
introduced for modeling of 2-D random fields. However, 
there are a few parameter and spectral estimation 
algorithms associated with two-dimensional 
autoregressive moving-average  (2-D ARMA) models in 
the technical literature [3-5]. As in the 1-D case, the 
parameter estimation problem for 2-D ARMA models is 
much more difficult than the 2-D AR models because of 
the intrinsic nonlinearity of estimating the                    
two-dimensional moving-average (2-D MA) parameters. 
In spite of this difficulty 2-D ARMA model is preferred to 
its AR or MA counterpart [3] due to the fact that 2-D 
ARMA model usually provides the most effective linear 
model of stationary random fields [3-5]. In the spectral 
domain while the ARMA models characterize both the 
peaks and the valleys, the AR models determine only the 
peaks and the MA models indicate only the valleys of the 
homogeneous random field [6]. From this viewpoint, 
Cadzow and Ogino [3] have developed a procedure for 
generating a 2-D ARMA model. In this procedure, the AR 
coefficients are estimated based on the weighted        
least-squares criterion and the MA parameters are 
obtained by using smoothed periodogram. Selection of 
weighting coefficients for the estimation of AR 
parameters and the usage of smoothed periodogram 
technique for determining the numerator polynomial of 
ARMA model’s power spectrum are some drawbacks of 

this algorithm. Another algorithm is introduced by Zhang 
and Cheng [4]. This algorithm is based on the 2-D ARMA 
spectral estimation approach. Here, the AR parameters are 
estimated by two-dimensional modified Yule-Walker    
(2-D MYW) equation and the MA spectrum parameters 
are obtained by employing the relationship between MA 
spectrum and model parameters of a 2-D ARMA model. 
On the other hand, as in the method [3], the MA 
parameters of the considered 2-D ARMA model is not 
acquired explicitly. Alternatively, Zhang [5] has proposed 
an iterative algorithm for the estimation of MA 
parameters of an ARMA model. This algorithm is based 
on the Newton-Rapson method and MA parameters are 
estimated explicitly from the 2-D ARMA process. 
However, computational complexity and the time- 
consuming iteration process for estimating MA 
parameters are some disadvantages of the method [5].   
 
In this study, we shall introduce a simple and 
computationally attractive algorithm for the estimation of 
quarter-plane causal 2-D ARMA model’s parameters by 
utilizing two-dimensional equivalent autoregressive (2-D 
EAR) approach. It is well known that a 2-D ARMA 
process is equivalent to a 2-D AR process of infinite 
length and it can be expressed by a sufficiently high order 
2-D AR process as in 1-D case of [7]. For a stationary and 
reversible 2-D ARMA process, there is a relationship; 
ARMA(p1, p2; q1, q2)=AR(∞; ∞). Using this relation, we 
propose an algorithm that is based on the connection 
between the parameters of the equivalent AR and the 
original ARMA process. The 2-D EAR parameters are 
obtained by using the 2-D MYW equation available in [4] 
with some variations. Then the obtained 2-D EAR 
parameters are used in the proposed algorithm so as to get 
the 2-D AR and MA parameters of a 2-D ARMA model. 
Thus, the 2-D ARMA model is fully characterized with 
our algorithm.  The proposed algorithm can be regarded 
as an extension of Martinelli’s 1-D ARMA estimation 
technique [7] to the 2-D case. Our algorithm gives good 
performance in estimating the 2-D ARMA parameters and 
white noise variance that is used to excite the linear   
time-invariant (LTI) ARMA model. 



II. QUARTER-PLANE 2-D ARMA MODEL  
The proposed method is based on the quarter-plane causal 
LTI 2-D ARMA model. From this viewpoint, the general 
stationary 2-D ARMA process of order (p1, p2; q1, q2) is 
modelled as the output of a 2-D digital filter excited by a 
white noise process. Then the transfer function of this 
filter is given by    
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This is also the transfer function of the quarter-plane 
causal 2-D ARMA model. In (1), the coefficients dm,n,    
(0 ≤ m ≤ p1, 0 ≤ n ≤ p2, (m,n) ≠ (0,0))  and ah,j,                 
(0 ≤ h ≤ q1, 0 ≤ i ≤ q2, (h,i) ≠ (0,0)) characterize the AR 
and MA parts of the 2-D ARMA process, respectively. 
We assume that the orders p1, p2 and q1, q2 are known and 
a0,0 = 1. The   (n1, n2)th sample of the process is given on 
the basis of (1) by the following difference equation: 
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where 0 ≤ n1 ≤ N1, 0 ≤ n2 ≤ N2 and w(n1,n2) is the sample 
of zero mean white gaussian noise process with variance 
σw

2. N1 and N2 correspond to the number of samples 
generated from the process of x(n1, n2) defined by (2). The 
process x(n1,n2) is the output of the most effective quarter-
plane causal LTI system with transfer function (1). The 
power spectral density of x(n1,n2) is defined by, 
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III. THE PROPOSED METHOD 

The algorithm introduced here is realized under the 
assumptions of a0,0 =1, q1 ≤ p1, and q2 ≤ p2. This algorithm 
is a three-step approach: first the 2-D EAR parameters are 
estimated by using 2-D MYW equation available in [4] 
with some variations; second the MA parameters are 
obtained by substituting the EAR coefficients in the 
established formula; then the AR parameters are estimated 
by using the EAR and MA parameters acquired in first 
and second step.  
 
COMPUTATION OF THE 2-D EAR PARAMETERS 
The AR process equivalent to the ARMA process can be 
obtained as the asymptotic expansion of the inverse of (1). 
That is, 
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where bi,j are the parameters of EAR model. It can be 
approached to the expression determined in (4) by using 
sufficiently high order 2-D EAR model. From this 
viewpoint, for any L1 and L2  values, the estimation 
process of the 2-D EAR(L1, L2) model parameters is 
realized by using the 2-D MYW equation [4] with some 
variations. The 2-D MYW equation given for 2-D 
ARMA model in [4] is rearranged in order to obtain 2-D 
EAR model parameters in (4). For the 2-D EAR model of 
order (L1, L2), the 2-D MYW equation can be determined 
by 
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The equation (5) can be written in the matrix form: 
 
                                          Rb=ε                                     (6)   
 
Where R is a block-Toeplitz matrix with dimension of 
(L2+1)×(L2+1): 
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in which each of the submatrices, Rk, is a Toeplitz matrix 
with dimension of (L1+1)×(L1+1): 
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{rxx}values given in (8) are the autocorrelation values of 
the observed data determined by (2) and these values are 
computed by the following formulas [4]: 
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For the solution of (6), the 2-D EAR parameter sequence 
and the right hand side of (6) is determined as follows: 
 



b= [ ]TLLLLLL bbbbbbbbb
212211 ,,1,01,1,11,00,0,10,0 ,..,,;....;,..,,;,..,,  

                                ε= [ ]Tw 0,.......,0,0,2σ                            (10) 
 
where each of the b and  ε vectors have (L1+1)× (L2+1) 
components. Benefiting from the (6), the solution of the 
2-D EAR model parameters is given by b=R-1ε.                                
Taking account of simplicity of ε, the solution of b can be 
determined by, 

b= 2
wσ f                 (11) 

 
in which the f vector forms from the values at the first 
column of R-1 and it is defined in the form of 
   
f= [ ]TLLLLLL fffffffff

212211 ,,1,01,1,11,00,0,10,0 ,..,,;....;,..,,;,..,,  (12) 
 
The first component b0,0 of the vector b must be chosen 
so that b0,0 =1 for the convenience of  the assumptions 
assumed in former section. Furthermore, we can find the 
variance of the white gaussian noise excited to the 2-D 
ARMA model defined by (1). Thus, the variance of white 
gaussian noise is estimated by benefiting from the     
(10)-(12) as follows: 

                                  2
wσ =

0,00,0

0,0 1
ff

b
=                           (13) 

 
ESTIMATION OF THE 2-D AR AND MA 

PARAMETERS 
Benefiting from the (1) and (4), under the assumption of        
a0,0 =1, the relation among the dm,n, ak,l, and bi,j  for any L1 
and L2 values can be given as   
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Each of the matrices defined in (14) have the dimension 
of (L1+1)× (L2+1). Formula (14) is the desired relation. 
This formula can be used for determining the         
quarter-plane causal 2-D ARMA parameters from those of  
the 2-D EAR coefficients obtained by (11). The orders L1 
and L2 cannot be selected below the values of L1=(p1+q1), 
L2=(p2+q2). Since L1 and L2 are usually chosen larger than 
the number of unknowns, p1+q1 and p2+q2, respectively, 

the matching between the matrices ∑ ∑∑
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and D-B0,0 required in (14), will be obtained by 
minimizing of the square of their difference with respect 
to the 2-D MA parameters. From the assumption of AR 
and MA parameters are real, this minimization operation 
is defined by, 
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ξ , for k=0,1,...,q1 ; l=0,1,...,q2, k=l ≠ 0        (15) 

 
At the end of this process, it is obtained  (q1+1)×(q2+1)-1 
linear equation sets as much as unknown MA parameters. 
The resulting system of linear equations can be 
determined in the matrix form. Thus, the MA parameters 
are obtained by solving the following linear system: 
 
                                          Ca=g                
where                     
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where the vector a is the desired MA parameters. 
Benefiting from the expressions defined in (14), the 
components of  the vector g and the matrix C is given by   
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Note that p, s = 0,1,...,q1;  r, t = 0,1,...,q2. At the same 
time (p, r) ≠ (0, 0) and (s, t) ≠ (0, 0). 
 
Then the AR parameters are derived simply by inserting 
the estimated MA parameters in (14). Thus, we have  
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where m=0,1,...,p1 and n=0,1,..,p2, (m, n)≠(0, 0),  d0,0 = 1. 
 

IV.  SIMULATION RESULTS  
In order to test the efficiency of the proposed algorithm 
we have considered two different examples with distinct 
L1 and L2 values. In each of the examples N1 and N2 have 
been taken as (N1, N2)=(60, 60). For each of the examples, 
an estimate of each of the coefficients of the ARMA 
process has been characterized by the mean and the 
standard deviations. The mean value expresses the 
estimated coefficients of the considered 2-D ARMA 
model. The estimated values have been obtained by 10 
independent runs of the proposed algorithm. Furthermore, 
the performance of the proposed algorithm has been 
evaluated with respect to the different performance 
criteria. These performance criteria are magnitude and 
contour plots of spectrums and the norm of difference 
matrix between the true and estimated coefficient matrices 
corresponding to the true and estimated model parameters. 
The power spectrums have been obtained by inserting the 
true and estimated model parameters in (3).        
 
Example 1: This example deals with the broad-band 
process. Here, we have applied our algorithm to the 
broad-band process corresponds to the ARMA(1,1; 1,1) 
model. The orders of the 2-D EAR model have been 
chosen as (L1, L2)=(2, 2) and (L1, L2)=(5, 5) for the 
comparison of the estimated results with the true model 
parameters. The estimated values characterized by the 
mean and the standard deviations and the true values have 
been shown in Table I. The magnitude and contour plots 
of power spectrums correspond to this example have been 
illustrated in Figure 1 and Figure 2. Table II shows the 
similarity between true and estimated values.    
 
Example 2: This example is related to the narrow-band 
process. In this example, we have applied our algorithm to 
the narrow-band process corresponds to the     
ARMA(1,1; 1,1) model. The orders of 2-D EAR model 

have been taken as (L1, L2)=(2, 2) and (L1, L2)=(7, 7) to 
compare the estimated results with the true model 
parameters. The estimated values characterized by the 
mean and the standard deviations and the true values have 
been shown in Table III. The magnitude and contour plots 
of power spectrums correspond to this example have been 
illustrated in Figure 3 and Figure 4. Table IV shows the 
similarity between true and estimated values. 
 
Table I.  Statistics for a Broad-band  ARMA(1,1; 1,1) Process. 

 
 (L1, L2) = (2, 2) 

(minimum) 
(L1, L2) = (5, 5) 

True Values Mean Std.Dev. Mean Std.Dev. 
d0,1 = -0.130 -0.1362 0.1037 -0.0899 0.1068 
d1,0 = 0.400 0.4415 0.0642 0.2795 0.0888 
d1,1 = -0.260 -0.2596 0.0937 -0.2376 0.0723 
a0,1 = -0.294 -0.2915 0.0958 -0.2497 0.1190 
a1,0 = 0.252 0.2996 0.0693 0.1318 0.0926 
a1,1 = -0.150 -0.1523 0.0825 -0.1142 0.0676 

True variance Estimated  variance Estimated  variance 
1 0.9940 0.9983 

 
Table II. The norms of difference matrices correspond to the true 

and estimated mean values in Table I. 
  

(L1, L2)=(2, 2) 
(minimum) 

(L1, L2)=(5, 5) Performance 
Criteria 

AR MA AR MA 
L1-norm 0.0415 0.0476 0.1205 0.1202 
L2-norm 0.0415 0.0477 0.1228 0.1262 
L∞-norm 0.0419 0.0499 0.1429 0.1560 

Frobenius norm 0.0420 0.0477 0.1290 0.1330 
 

Table III.  Statistics for a Narrow-band  ARMA(1,1; 1,1) 
Process. 

 
 (L1, L2) = (2, 2) 

(minimum) 
(L1, L2) = (7, 7) 

True Values Mean Std.Dev. Mean Std.Dev. 
d0,1 = -0.34 -0.4052 0.0169 -0.3203 0.0318 
d1,0 = -0.280 -0.3371 0.0323 -0.2571 0.0249 
d1,1 = -0.230 -0.1749 0.0280 -0.2574 0.0407 
a0,1 = 0.400 0.3039 0.0121 0.4201 0.0342 
a1,0 = 0.350 0.2724 0.0244 0.3739 0.0276 
a1,1 = 0.150 0.0852 0.0125 0.1696 0.0324 

True variance Estimated  variance Estimated  variance 
1 0.9817 0.9296 

 
Table IV. The norms of difference matrices correspond to the 

true and estimated mean values in Table III. 
  

(L1, L2)=(2, 2) 
(minimum) 

(L1, L2)=(7, 7) Performance 
Criteria 

AR MA AR MA 
L1-norm 0.1203 0.1609 0.0472 0.0397 
L2-norm 0.0949 0.1264 0.0392 0.0341 
L∞-norm 0.1122 0.1424 0.0504 0.0435 

Frobenius norm 0.1027 0.1395 0.0408 0.0369 
 
 



 
 
Figure 1. a) Magnitude and Contour Plots of the original power 
spectrum b) Magnitude and Contour Plots of the estimated 
power spectrum by (L1, L2)=(2, 2) for example 1. 
 

 
 
Figure 2. a) Magnitude and Contour Plots of the original power 
spectrum b) Magnitude and Contour Plots of the estimated 
power spectrum by (L1, L2)=(5, 5) for example 1. 
 

 
 
Figure 3. a) Magnitude and Contour Plots of the original power 
spectrum b) Magnitude and Contour Plots of the estimated 
power spectrum by (L1, L2)=(2, 2) for example 2. 

 
 
Figure 4. a) Magnitude and Contour Plots of the original power 
spectrum b) Magnitude and Contour Plots of the estimated 
power spectrum by (L1, L2)=(7, 7) for example 2. 
 

V. CONCLUSION 
A new algorithm has been proposed for the parameter 
estimation of a quarter-plane causal 2-D ARMA model. A 
recursive equation relating the model parameters of a      
2-D ARMA process and those of corresponding 2-D EAR 
coefficients has been derived. 2-D AR and MA part of an 
ARMA process are obtained from the estimated 2-D EAR 
coefficients by using this equation.  The simulation results 
show that our algorithm works well for the estimation of 
the parameters of the broad-band and narrow-band 
process with different L1 and L2 values. For the        
broad-band process, the estimated parameters have 
converged to the original ones for the minimum values of 
L1 and L2, i.e. (L1, L2)=(2, 2). On the contrary, for the 
narrow-band process, the estimated parameters have 
converged to the original coefficients for the values that 
are bigger than the minimum values of L1 and L2, i.e.    
(L1, L2)=(7, 7). These results can be observed from the 
performance criteria illustrated in Table II and Table IV.    
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