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Abstract

In this paper, we present a new formulation of the rectilinear Steiner tree problem (MRST) that takes
performance into consideration, and we call it the performance oriented minimum rectilinear Steiner tree
problem (POMRST). The POMRST problem is a more general version of the minimum rectilinear Steiner
tree problem. This formulation is especially useful in the case of net connection high performance circuits
in VLSI CAD. Recently, a related but less general problem has been addressed in [{].Since the POMRST
problem is also NP-hard, we provide an effective heuristic for it. When we apply our POMRST heuristic
to solve the MRST problem, our experimental results indicate an average of 10.64% improvement over
the minimum spanning tree. This compares favorably with the ewisting techniques cited in [1 7]. Optimal
solutions are obtained for test cases of 3 to 6 points. In the context of the POMRST problem, we tried test
cases with widely different percentages of critical source-sink pairs and our ezperimental results indicate

that a small increase in the total interconnection length can greatly enhance the circuit performance.

1. Introduction

Let S = {p1,p2,.--,Pn} be a set of n points in the plane. A Minimum Rectilinear Steiner Tree for the set
S, denoted by MRST(S), is a minimum length tree with rectilinear edges that connect all the points in the
set S. Unlike spanning trees, there are some vertices with degree 3 or 4 in the resulting MRST(S) that do
not belong to S. These points are known as Steiner points.

The rectilinear minimum Steiner tree problem can be used in the layout of electrical wires, pipes, etc.,
and in building constructions and connecting signal points of a net together in VLSI routing. An excellent
survey of the Steiner tree problem can be found in [9]. Unfortunately, the MRST problem is found to be
NP-complete [7]. This implies that an efficient optimal algorithm for the MRST problem is unlikely to be
found. However, efficient optimal algorithms have been developed for some special cases [1, 2, 3, 16].

* This work was done while the first author was at the Department of Computer and Information and Computer Sciences,

University of Florida, Gainesville; and the second and third authors at the Department of Computer Science, University of
Minnesota, Twin Cities.
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Hwang [8] was able to establish that

Lyrspr(s) <3

Lyrst(s)y ~ 2

where Lyrspr(s) is defined to be the length of the minimum rectilinear spanning tree and Lyrst(s) to be
length of the minimum rectilinear Steiner tree. It is an open question if there exists any heuristic that has
a lower worst case bound.

Up until now, only one exact algorithm for the MRST problem has been proposed [20, 21]. Yang
provided a straightforward branch and bound algorithm that can only solve very small test cases. Due to
the immense computing time required to obtain the optimal solution for the MRST problem, all heuristics
tabulate their performance by comparing themselves against the MRSpT result. The performance of existing
techniques to find approximate solutions to the MRST problem are surveyed in [17].

The MRST is commonly used in VLSI for connecting n points of a net. A net has a designated signal
source. The rest of the points in the net are signal destinations (or signal sinks). The performance of a
circuit is determined by the critical paths in the circuit. So, if a source-sink pair is on a critical path, the
connection between them should be made as short as possible. While the MRST solution connects the net
with the minimum total wire length, the issue of performance of the connection is not considered. It was
reported in [5,12,18,19] that in some high performance circuits, the interconnection delay may contribute
up to 70 % of the total delay of the circuits. Since, performance of a design is becoming the differentiating
factor in the success/failure of a VLSI product, constructing a Steiner tree with consideration of performance
is important. Recent progress on timing driven global routing [6,10,14] is cited in [4], while a solution that
exhibits trade-off between interconnection delay and routing cost is first proposed in [4].

In Section 2, we first provide the formulation of the performance oriented minimum rectilinear Steiner
tree problem, denoted by POMRST, and discuss its complexity. We assume a commonly used delay model
where the propagation delay of a signal between 2 points is proportional to the distance between them. In
simple terms, we introduce additional maximum distance constraints on the distance between each source-
sink pair in the resulting Steiner tree. Note that due to possibly different requirements, we allow the
distance constraint for one source-sink pair to be different from the distance constraint for another pair. In
[4],a nonuniform bounded radius routing tree (NBRMRT) problem is proposed (as well as an approximation
algorithm}) which can be expressed as the POMRST problem with a maximum distance allowed from source
to a sink d; is equal to (1 + ¢;).R. R is the distance between the source and the furthest sink and ¢; is
a constant greater than 0. This implies that the tightest maximum distance constraint imposed on any
source-sink pair is greater than R. However, the sink of a very critical source-sink pair may lie anywhere in
the routing area. Therefore, the NBRMRT formulation fails to cater for critical source-sink pairs in which
the sinks are not at the greatest distance from the source. Our formulation provides more flexibility in this
regard.

In Section 3, we present our heuristic to solve the POMRST problem. The heuristic works iteratively
to grow a Steiner tree in a greedy fashion.

In Section 4, we present experimental results on our heuristic using randomly generated test cases. The
experiments involve test cases with and without maximum distance constraints (i.e., the MRST problem).
For the MRST problem, we obtain an average of 10.64% improvement over the minimum spanning tree.
This compares favorably with the existing techniques cited in [17]. For comparison, we also program a
branch-and-bound algorithm for the MRST problem. We ran our branch-and-bound algorithm on some
randomly generated test cases of 3 to 6 points which verifies the optimality of the solutions obtained by our
heuristic for the test cases. In the context of the POMRST problem, we tried test cases with widely different
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percentages of critical source-sink pairs and our experimental results indicate that a small increase in the
total interconnection length can greatly enhance the circuit performance. '

We also list our input generation procedures so' as to facilitate comparison of our work with new
results to be obtained in future.

2. Problem Formulation

Below is the formulation of the POMRST problem:
Given aset, S = {p1,p2,...,pn}, where S is a set of points on a plane, a designated source s € S, a maximum
distance function md : s x (§\'s) — Z*, and an edge distance function A(p,q) = |pz — go| + lpy — a4,
i.e., the rectilinear distance between points p and g. Let S’ be all the intersection points when horizontal
and vertical lines are drawn through all the points in S. The POMRST problem is to find a spanning tree,
G* = (T, Er) which is a subgraph of G = (5,5’ x §') and S C T such that:

min ZeGE’r A(e)

st:

distance(s,p) < md(s,p), Vpe S\s

where
the distance(s,p) is the length of the path from s to p in the tree constructed and

md(s,p) is the maximum possible distance between s and p.
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(a) MRST (b) POMRST
p1 is the source and pz,...,p7 are destinations. Assume the rectilinear distances of p; to pa,...,p7 are 4,7,8,9,7,6

respectively (minimum possible distances). For MRST, the total length of interconnection is 14 and the distances be-
tween p; and ps; ps, P4, P5, D6, P7 are 4,7,8,11,11, 10 respectively. The total length of interconnection for POMRST
is 16. The distances between p; and pa, ps,ps, s, ps, pr are 4,7,8,9,7,6 respectively.

Figure 1. MRST and POMRST solutions for connecting 7 points.

In the MRST problem, we set md (s,p) to oo or a very large number. This implies the removal of the
maximum distance (or maximum delay in the context of VLSI) constraints.

In the performance oriented minimum rectilinear Steiner tree (POMRST) problem, md(s,p) is set to
a certain value, depending on whether the source-sink pair (s,p) is on any critical path. Since, the MRST
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problem is NP-complete, and the MRST problem is a special case of the POMRST problem, the POMRST
problem is also NP-hard

Figure 1 illustrates the difference in the construction for MRST and POMRST solutions. Note that by
increasing the total wire length by 2 units, the distance between (p1,ps), (p1,Ps), and (p1,pr) is decreased
by 2,4 and 4, respectively.

3. The POMRST Heuristic

3.1. An Overview

Our heuristic works iteratively by growing the Steiner tree one edge at a time. The initial Steiner tree
contains the source only. Each iteration is divided into two stages. Let ST be the current Steiner tree at
the beginning of each iteration and let Vi be the set of vertices contained in ST'.

In the first stage, we run a performance-oriented spanning tree construction procedure to connect the
points in S — V; to ST'. We denote each new edge introduced at this stage as a spanning tree edge. Note
that every spanning tree edge is directed.

In the second stage, we grow ST by one grid edge. The grid edge is selected from the grid formed by
drawing horizontal and vertical lines through the points in S — V;. The spanning tree edges discovered in
the first stage will be used to guide our selection. Note that the grid edge selected may not necessarily be a
spanning tree edge. Intuitively, the selection process involves a weighting scheme that favors the grid edge
that will allow a lot of sharing and bring the points in S — V; “closer” to the new ST'.

Figure 2 illustrates the growing of the Steiner tree. In Section 3.2., we formulate the performance-
oriented spanning tree problem and describe a heuristic for it. The details of the weighting scheme for
selecting a grid edge are presented in Section 3.3.

[ ]
[ ]
@
Potential Potential
ST edges to grow edges to grow
\ ST
e el Ly e A N
(a) Pts to be connected (b)POMSpT & grid plane (¢) Grow ST along a grid edge
1- . o: ------ : . T
—9o — o o |
(d) Repeat and grow (e) Repeat and grow (f) POMRST generated

Figure 2. Growing of Steiner tree.
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3.2. Performance-oriented Spanning Tree

The performance-oriented minimum spanning tree problem (POMSpT) is formulated below. In simple terms,
the goal is to construct a minimum length spanning tree such that the maximum distance constraint for each
source-sink pair is satisfied. In general, the edge distance function can be arbitrary, but it is specialized to
be the rectilinear distance in this context.

Given a graph G = (V,E), where V is the set of vertices, F the set of edges, a source vertex
s € V, an edge distance function A : E — R™, a maximum distance function between any vertex and s,
md:sx (V\s) — R, and a value B € R*. Find a spanning tree T, if possible, that satisfies,

MT) = X5, Ne) < B
distance(s,1) < md(s,i), Vie V' \s

Each spanning tree edge (u,v) is drawn as a directed arc from u to v, but the length of (u,v) is the
rectilinear distance between « and v.

In [11], it is proved that the POMSpT problem is NP-hard for an arbitrary distance function .
It is also proved that the POMSpPT problem remains to be NP-hard in the Euclidean plane. It is also
demonstrated that the ratio of the lengths of a POMSpT and the MST is not bounded by any constant.

We extend the well-known Prim’s minimum spanning tree algorithm to a heuristic for the POMSpT
problem. Figure 3 provides the details of the procedure.

Procedure POMSpT(Init_T, V1, Vo, md);

SPT := Init.T; done := false

while V2 # () and not done do

begin
let (u,v) be a least cost edge such that w € Vi and v € V>
and dist(s,u) + |ue — Va| + |uy — vy| < md((s,v));
if (no such edge exist) then done := true
else add v to Vi, add (u,v) to SPT, remove v from V2
dist(s,v) := dist(s,u) + |us — vaz| + [uy — vyl;

end;

if V2 #0
then writeln(’No solution can be found’);

Figure 3. Heuristic for the POMSpT problem.

In order to be used as a subroutine to solve the POMRST problem, the procedure accepts three input
parameters: (a) Init_T - the starting tree to be grown which is represented as a set of tree edges, (b) Vi — the
vertices contained in Init_T, and (c) V3 — the vertices to be connected. The rectilinear distance function is
used in the procedure.

3.3. The Heuristic and the Growing Strategy

‘We describe in this section the remaining details of our POMRST heuristic. Figure 4 illustrates the framework
of the heuristic. The heuristic starts with a partially formed Steiner tree, ST, which contains only the source
s. It will continually grow the partially formed Steiner tree until V2 becomes empty (i.e., all the points in
S are in the Steiner tree ST'). ‘
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Algorithm POMRST(S, s, md );
/* To find Minimum Rectilinear Steiner Tree that satisfy
the maximum distance constraints, S is the set of points,
s is the source and md are the distance constraints */

begin
ST :=0;
Vi :={s}; /* Steiner tree with vertex s */
Va:i= 8 —{s};
while V2 # 0 do
begin

call POMSpT (ST, Vi, V2, md);
perform no-choice-grow;
if no-choice-grow did nothing then
begin
grid plane;
calculate the weight for the grid edges;
grow ST': select a grid edge (a,b), ST := ST U {(a,b)},
Vii=Viu{b}, Vo:=Vo— {b};
end;
end
remove dangling edges;

end;

Figure 4. Outline of the heuristic.

To decide where and how to grow ST, the POMSpT procedure of the previous chapter is used. Using
the POMSpT procedure, unconnected points in S are joined to ST with spanning tree edges. Suppose that
the POMSpT procedure has been invoked to introduce the spanning tree edges. If there is a vertical or
horizontal spanning tree edge (a,b) for some @ € Vi and some b € V3, and the distance from the source s to
a plus length((a,b)) ! is equal to md(s,b), then we invoke the no-choice-grow subroutine to grow the Steiner
tree by the edge (a,b). In the event that there are several such points in V5, the point b with the smallest
md(s,b) is selected. The justification for performing the no-choice-grow is that since these spanning tree
edges will inevitably be included in the Steiner tree, we may as well do it as early as possible so that this
may help in connecting other unconnected sinks in the future.

If the no-choice-grow procedure is not invoked, then we have to consider other alternatives to grow
ST. One immediate way to obtain a solution to the POMRST problem is to replace each spanning tree edge
(a,b) by two edges (a,c) and (c,b), where ¢ = (b;,a,) and b, and a, are the x-coordinate and y-coordinate
of b and a, respectively. However, this method is too greedy and does not exploit the fact that a new Steiner
tree edge introduced may be shared to improve the total length. So, we shall grow our Steiner tree in a less
greedy manner and in a “consistent direction” with some of the spanning tree edges generated. For example,

let (a,b) be a spanning tree edge as shown in Figure 5.

1 length((a,b)) denotes the length of the spanning tree edge (a,b).
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Figure 5.

If we choose to grow in a direction consistent with the spanning tree edge (a,b), we should grow from a
towards ¢ or d. To avoid being overly greedy, we shall grow by the grid edge e or e, instead of (a,c) and
(a,d). In reality, we do not explicitly select a spanning tree edge to guide the selection of the grid edge.
Instead, we define the weight of each grid edge by all the incident spanning tree edges and select the grid

edge with the maximum weight to be the new Steiner tree edge. The above is the sketch of the process. We
describe the details below.

Let horizontal and vertical lines be drawn through the endpoints of all spanning tree edges to form a
grid. Then we select a grid edge e that satisfies the following criteria:

1. e has exactly one endpoint » in V; (i.e., e is attached to ST').
2. u is also the endpoint of some spanning tree edge.
3. e has the maximum edge weight, weight(e), among all the grid edges that satisfy (1) and (2).
To define weight(-), we first define a notion of score(-) for grid edges and grid points. At the beginning,
score(e) and score(gp) are initialized to zero for all grid edge e and grid point gp.

{ 1
1 |
| {
| 1
1 |
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Suppose that there are k spanning tree edges (a,b;), 1 < i < k, that are incident to a vertex a in ST
and lie in the first or the fourth quadrant around a (refer to Figure 6). Let e; be the horizontal grid edge
that is incident to a and points to the right. Then score(ey) is set to ka, where a is an experimentally
determined parameter. The intuitive justification is that for large value of k, ep will be more heavily shared
and thus the future increase in total length is expected to be reduced. The scores of grid edges of other
orientations can be defined symmetrically.

In addition, it is also important to consider where a grid edge leads us to. So we also give scores to
the endpoints of the grid edges not belonging to Vi. Each spanning tree edge (a, b) defines a smallest box
enclosing it. First, we prefer grid points that fall into more such boxes because it implies that a grid edge
with such an endpoint will have direction “consistent” with more spanning tree edges. So, if a grid point
is enclosed by m such boxes, its score will first be set to m. Second, we should prefer grid points that
lie “closer” to the remaining unconnected points in V. Therefore, each grid point (gpz,gpy) receives an

additional score of

Y
Z \/@ —gpz)? + (py — gpy)* + 6

p=(p=,py)EV2
where v and § are experimentally determined parameters.
Finally, weight({a, b)) for a grid edge (a,b) is set to be:

length((a, b)) - (score((a, b)) + score(b) — o)

where o is an experimentally determined parameter.

This completes the description of the weighting scheme. After we have connected all the points in §
to ST, we need to remove all dangling grid edges that have been introduced previously. An edge is dangling
if one of its end points is not in S. Note that this has to be applied recursively since the removal of a
dangling edge may generate a new dangling edge.

4. Experimental Results

We implemented the POMRST heuristic in the C programming language and conducted experiments on
some randomly generated test cases. To facilitate comparison of our work with future new results, we list
in Figure 7 the procedures that we used to generate test cases. We used the random number generator in
[13] (see Figure 8). The initial seed value is set to 13957.

procedure generate(seed, mz, my,v,n);
/* To generate random n points on a plane mxz by my plane.
v stores the z and y co-ordinates */
begin
for i:=1 to n do
begin
done := false;
while done = false do
begin
done := true;
v[i].z := trunc(maz * rnd(seed));
v[t].y := trunc (my * rnd(seed));
for j:=1toi—1 do
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if (vlj].z = v[i].z) and (v[jl.y = v[i].y)
then done := false;
end;
end;

end;

Figure 7. Procedure generate.

function rnd(seed):real;

/* The random number generator for generating test cases */
begin

hi := trunc(seed/127773);

lo := seed — 127773 * hi;

test := 16807 = lo — 2836 x hi;

if test > 0.0
then

seed = test;
else

seed := test + 2147483647;
rnd:= seed/m;

end;

Figure 8. Function random.

All experiments were run on a SPARCstation SLC. Since MRST is a special case of POMRST and
there are a lot of previous work done on the MRST problem, we first apply our POMRST heuristic (with
some improvement) to solve some MRST test cases. Then we also test our heuristic with some randomly
generated POMRST test cases.

4.1. Experimental Results for MRST

We first tested our heuristic using 3 < n < 40 for the POMRST problem with no maximum distance
constraint. Without the maximum distance constraints, the POMRST is just the traditional minimum
rectilinear Steiner tree problem.

Since there is no maximum distance constraint, any point can be the source. We first divide the
gridded plane? into four quadrants by using the middle vertical and horizontal grid lines. By middle we
mean that the number of grid lines on the left (top) and right (bottom) of the chosen vertical (horizontal) grid
line differs by at most 1. A point is in a quadrant if it is located in the quadrant or on the boundary of the
quadrant. Four different source points are chosen, one from each quadrant. The heuristic will be activated
four times using each of the four different selected source points once. The best of the four solutions is
reported.

The experimental results are summarized in Table 1. Figures 9 and 10 provide a graphical repre-
sentation of our experimental results. For each n, 100 randomly generated test cases are generated and
evaluated. This is done by generating n points randomly on a 100 unit by 100 unit plane. The second
and third columns are the maximum and minimum improvement in total length of the rectilinear Steiner

2 The grid is formed by drawing horizontal and vertical lines through all the points in S.
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tree obtained by our heuristic over the minimum spanning tree (MRSpT), respectively. The fourth and fifth
columns are the average improvement of 100 test cases and the best average improvement of the first k > 20

test cases over the MRSpT, respectively.

Table 1. Experimental result for MRST problem.

Size | Impro. over all tries Average Improv. Time
n | Max Min All tries | Best > 20 tries sec.
3 | 24.15 0.00 6.98 7.47 0.001
4 | 20.56 0.00 8.53 9.23 0.002
5 | 24.05 0.00 9.70 10.41 0.004
6 | 21.80 1.89 9.98 11.51 0.007
7 | 18.06 3.12 10.18 10.91 0.011
8 | 18.99 2.78 10.80 11.00 0.017
9 | 20.00 3.61 10.43 10.88 0.023

10 | 16.33 3.66 10.41 11.71 0.034
11 | 19.63 4.82 10.44 11.24 0.047
12 | 19.38 4.86 10.38 11.67 0.060
13 | 15.79 3.91 10.20 10.67 0.075
14 | 16.40 5.38 10.60 11.26 0.094
15 | 15.94 4.01 10.59 11.08 0.120
16 | 16.38 2.98 10.73 11.39 0.151
17 | 16.98 6.10 10.83 11.31 0.185
18 | 15.31 6.77 10.88 10.97 0.210
19 | 14.67 5.56 10.28 10.73 0.248
20 | 16.79 5.84 10.60 10.93 0.301
21 | 14.36 6.46 10.57 10.98 0.380
22 | 15.33 6.39 10.74 10.97 0.459
23 | 15.14 6.67 10.64 11.10 0.535
24 | 15.14 6.57 10.68 11.33 0.609
25 | 16.22 5.09 10.48 11.26 0.695
26 | 14.78 5.87 10.63 10.94 0.790
27 | 14.93 5.82 10.69 10.84 0.896
28 | 14.17 3.96 10.77 11.30 1.05
29 | 15.12 6.70 10.95 11.48 1.22
30 | 15.79 7.26 10.74 11.50 1.40
31 | 16.43 7.33 10.62 11.12 1.62
32 | 15.23 5.31 10.54 10.85 1.87
33 | 15.37 6.92 10.81 11.56 2.10
34 | 16.07 7.63 11.02 11.52 2.41
35 | 17.06 7.08 10.81 11.45 2.73
36 | 14.29 6.69 10.69 11.52 3.05
37 | 13.92 7.66 10.88 11.26 3.67
38 | 14.03 7.40 10.67 10.89 4.06
39 | 14.29 7.05 10.78 11.02 4.54
40 | 13.34 7.51 10.81 11.27 5.12

For comparison, we also program a branch-and-bound algorithm to find the exact minimum rectilinear
Steiner tree for a set of points. The details of our branch-and-bound algorithm are given in the appendix.
Our branch-and-bound algorithm verifies that our POMRST heuristic obtains the optimal solution for our
test cases with 3 to 6 points. For 7 < n < 40, our heuristic has an average of 10.64% improvement over the
MRSpT solutions. This compares favorably with existing results cited in [17].
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4.2. Experimental Results for POMRST

In this section, we present the experimental results of our heuristic on POMRST problems. We evaluated our
heuristic for n = 10, 15,20, 25,30,35 and 40. For each n, 20 randomly generated test cases are evaluated.
For each n, n points are generated on a 250 by 250 unit plane. If a source-sink pair is critical, we set
its maximum distance bound to be the rectilinear distance between them. We ran our POMRST heuristic
on test cases with 0%,10%,25%,50% and 75% of the source-sink pairs set to be critical. A very large
maximum distance bound is prescribed to those non-critical source-sink pairs (i.e., there is no constraint on
the maximum distance for non-critical source-sink pairs).

Table 2. POMSET results with different number of critical paths.

Size POMRST with diff. # CSP
n 0% | 10% | 25% | 50% | 75%
10 588 602 608 638 652
15 745 754 789 812 820
20 866 898 943 981 | 1051
25 978 | 1019 | 1065 | 1128 | 1191
30 | 1067 | 1121 | 1165 | 1271 | 1322
35 | 1142 | 1195 | 1257 | 1395 | 1415
40 | 1226 | 1301 | 1372 | 1445 | 1504
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Table 3. Number of violations of maximum distance constraints.

Violations of maximum distance constraints

n 10% 25% 50% 75%

#CSP | # V| BV |#CSP|#V| BV | #CSP | #V| BV |#CSP | #V | %V
10 1 0.5 50 2 0.9 45 5 2.5 50 7 3.9 | 55.71
15 L 0.4 40 3 1.9 | 63.33 7| 4.1 58.57 11 6.4 | 58.18
20 2 1.5 75 5 34 68 10 6.9 69 15 | 10.2 68
25 2 1.5 75 6 4.6 | 76.66 12 9.2 | 76.66 18 | 134 | 74.44
30 3 2.3 | 76.66 7| 5.1 72.86 15 | 10.9 | 72.66 22 | 17.7 | 80.45
35 3 2.4 80 8 6.2 | 775 17 | 13.6 80 26 | 19.9 | 76.54
40 4 3.3 | 825 10 8.3 83 20 | 16.2 81 30 | 24.2 | 80.67

The experimental results are summarized in Tables 2 and 3. In Table 2, the second, third, fourth, fifth
and sixth columns give the lengths of the rectilinear Steiner tree generated with 0%, 10%, 25%, 50% and 75%
of the source-sink pairs set to be critical, respectively. Note that the POMRST problem becomes the MRST
problem when there is 0% critical source-sink pairs. In Table 2, we observe only a marginal increase in the
total length when we compare other columns with the column for 0% critical source-sink pairs. Since our
heuristic has demonstrated a favorable performance_for the MRST problem, we suspect that for randomly
generated test cases, each critical source-sink can be connected (using our heuristic) via a shortest rectilinear
path between the source and sink with only a relatively small increase in the total length when compared
to the MRST.

We can interpret the above observation in two different ways. It may mean that our POMRST heuristic
works effectively to keep the increase in the total length of the Steiner tree small. On the other hand, it
may happen that our test cases are easy. That is, even if we ignore the maximum distance constraints and
solve the MRST problem using our heuristic, the maximum distance constraints of only very few critical
source-sink pairs will be violated in the Steiner tree obtained. Therefore, our heuristic may not need to work
very hard and the increase in total length is small.

To investigate the second possibility, we conducted the following experiment. For each percentage, we
also find out how many critical source-sink pairs will be at distances further than their rectilinear distances
apart, if we ignore the critical source-sink pairs and just run our POMRST heuristic with no maximum
distance constraints. The results are tabulated in Table 3. #CSP represents the number of critical source-
sink pairs. #V is the average number of critical source-sink pairs that are at distances greater than their
rectilinear distances apart. %V is the percentage of violation. The results show that the average percentage
of violation is greater than 68% and the percentage of violation increases with the size of test cases to above
80% in all columns. Thus, this shows that our test cases are not easy and gives support to the favorable
performance of our heuristic.

5. Conclusions

We have developed a new formulation of the rectilinear Steiner tree problem known as the performance
oriented rectilinear Steiner problem that takes performance into consideration. Since the problem is NP-
hard, we provided a heuristic for it. Our heuristic is able to generate solutions for nets of size n < 40
quickly. When we restrict our problem to the traditional minimum rectilinear Steiner tree problem, our
heuristic is able to generate solutions that are, on the average, 10.64% better than the minimum rectilinear
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spanning tree solution, for all 7 < n < 40. When 3 < n < 6, our heuristic generated optimal solutions for
the test cases. Our experiments on POMRST problem indicate that a small increase in the total length of
interconnection can improve the performance of the net tremendously. The POMRST problem is very useful
in the routing of high performance circuits.
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Appendix: The Branch-and-bound Algorithm

The first step is to grid the plane in which the points in set S are located. Let W be the set of points where
the grid lines intersect. Clearly, S C W. A POMRST can be found by choosing its Steiner points from
W-S.

Let n be the number of sinks to be joined to the source. Each partial solution is represented by a
partial tree. A partial tree is a collection of edges. The branch-and-bound algorithm will keep growing each
partial tree in a breadth first manner. A breadth first search strategy is used using a FIFO queue.

Each partial tree stored in the queue is associated with two values, [b and ub. Ib stores the lower
bound of the length of the best Steiner tree that contains that partial tree as a subgraph. ub stores the
upper bound of the length of a possible Steiner tree that contains that partial tree as a subgraph.

Two global variables are also maintained: best,; and best..s;. The variable best,; stores the smallest
upper bound discovered so far. The variable bestos: stores the smallest length of the complete Steiner trees
discovered so far.

Figures 11, 12, and 13 provide the pseudo codes for our branch-and-bound algorithm. To compute
I for each partial tree, we run Prim’s algorithm to find spanning tree edges to connect the remaining
unconnected points to the partial tree. Then the lower bound is computed :

2
Lowerbound = length of partial tree + 3 x sum of lengths of spanning tree edges

The upper bound can be computed by joining the remaining unconnected points to the partial tree using
the POMRST heuristic with no maximum distance constraints. Then the upper bound is computed :

Upperbound = length of partial tree + cost for joining unconnected points

Algorithm Branch-and-Bound(S );
/* To find Minimum Rectilinear Steiner Tree */
begin
while queue not empty do
begin
repeat .
current:=dequeue();
until current.lb < best,, and current.lb < besteost ;
if current connects all sinks
then
begin
record current;
update bestcost and best,, if necessary

end
else if current.lb < best,
then
call Expand (current);
end
end;

Figure 11. Main Program of Branch-and-bound Algorithm.
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procedure Ezpand(current);
begin
Pick a leaf node in the partial tree current;
For each possible direction in which current can grow from that leaf do
call Try (current,leaf,direction);
end
end;

Figure 12. Procedure Expand.

procedure Try(current,leaf, direction);
begin
Grow current in the given direction from that leaf;
if a cycle is created then return;
if the new partial tree has been produced before then return;
if the growth creates some useless turns then return;
/* The new partial tree passed the pruning steps */
Compute the cost of the partial tree;
Compute the [b value for the partial tree;
if Ib is not smaller than best.os: and best,; then return;
Compute the ub value for the partial tree;
Update bestcos: and bestyy if needed;
Append this partial tree to end of queue;
end;

Figure 13. Procedure Try.
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