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ABSTRACT 

In this paper, position control of a BLDC motor is 
studied. This position control is LQG/LTR control 
algorithm. In addition, a system identification approach 
is used to obtain the nominal plant of BLDC Motor. As a 
consequence, proposed controller is employed for an 
experiment. It is done by a real-time target machine. 

Keywords: LQG/LTR, position control, BLDC motor, 
control, system identification, real-time operations. 

INTRODUCTION 

 This paper studies the position control of guided 
system’s flap that actuated by BLDC motor under unknown 
disturbances. The reasons behind using BLDC motor for 
flap control are summarized as follows. BLDC motors have 
better speed-torque characteristic, better dynamic 
performance, better efficiency, longer shelf-life than DC 
motors [1]. According to these advantages, permanent 
magnet brushless DC motors have been used increasingly in 
aerospace, military and industrial applications for years [2].  

On the other hand, control of the system’s behavior is 
not easy to handle for aerospace and military applications 
because of environmental conditions [3]. In addition, the 
dynamic structure of BLDC motor is highly complicated and 
has non-linear properties [4]. Moreover, the performance 
specifications of mentioned applications are relatively high 
and the modeling errors and plant uncertainties can affect 
negatively the performance of the flaps and related to 
system’s overall performance.    

To achieve precision operation and meet high 
performance specifications, it is necessary to develop a 
controller that has good robustness properties and overcome 
parameter variations, plant uncertainties and load 
disturbances. These controller requirements can be made by 
several robust controllers [5-6]. Among them LQG/LTR 
methodology is well-developed, well-known and easy-to-use 
[7]. The main aim of LQG/LTR methodology is the 
recovery of the desired robustness properties of Linear 
Quadratic Regulator in LQG design.  Extended description 
can be found as in [8]. 

By using LQG/LTR methodology, the loop transfer 
function can be shaped so that the closed-loop system will 
yield; 

i. Good command following 

ii. Good disturbance rejection  

iii. Good robustness 

  In this paper, LQG/LTR control system is employed to 
design the servo control loop of a permanent magnet 
brushless DC motor for meet the performance requirement 

of the overall systems and improve the robustness/stability 
performance in frequency domain.  

 This paper is organized as follows. Section II gives the 
general properties about dynamics of BLDC motor. The 
simplified mathematical model of the motor is introduced. 
By system/parameter identification, the approximate value 
of the parameter is found in this section. This nominal 
model is sufficient to design LQG/LTR compensator to 
achieve performance and stability specifications that are 
explained above. Section III presents the LQG/LTR 
compensator design. In this section, first, general 
mathematical explanations are given. Then, the desired loop 
transfer function is developed. This desired loop transfer 
function is focused especially in high frequency region since 
the simplified nominal model does not capture all relevant 
high frequency of the physical process.  Finally, the 
complete control system design and analysis are done. 
Section IV illustrates the real experiment under acceptable 
conditions. The applicability of the LQG/LTR control theory 
in the design of position control for flap system is shown in 
this section. Moreover, experimental results are given and 
argued. Conclusions are given in Section V.  

 
DYNAMICS OF BLDC MOTOR 

A. Modelling of PM BLDC Motor 
The flux distribution in PM BLDC motor is trapezoidal 

and therefore the d-q rotor reference frames model 
developed for PM synchronous motor is not applicable [9]. 
It is convenient to derive a Permanent Magnet BLDC motor 
model in phase variables for the nonsinusoidal flux 
distribution. The complete state-space representation of 
BLDC motor that includes nonlinear terms, as in (1)-(5), is 
given.                 ݔሶ ൌ ݔܣ  ݕ       ,ݑܤ ൌ ݔܥ  ݔ                (1)             ݑܦ ൌ ሾ݅௦ ݅௦ ݅௦ ݓ ߠሿ               (2) 

ێێۏ ܣ
ۍێێ െܴ௦/ܮ 0 0 λ୮fୟୱሺߠሻ/L 00 െܴ௦/ܮ 0 λ୮fୠୱሺߠሻ/L 00 0 െܴ௦/ܮ λ୮fୡୱሺߠሻ/L 0λ୮fୟୱሺߠሻ/J λ୮fୠୱሺߠሻ/J λ୮fୡୱሺߠሻ/J െܬ/ܤ 00 0 0 ܲ/2 ۑۑے0

 (3)    ېۑۑ

ܤ               ൌ ێێۏ
ܮ/1ۍێ 0 0 00 ܮ/1 0 00 0 ܮ/1 00 0 0 െ1/0ܮ 0 0 0 ۑۑے

 (4)              ېۑ

ݑ               ൌ ሾݒ௦ ݒ௦ ݒ௦ ܶሿ்                            (5) 
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where θ୰ is rotor position, w୫ is rotor speed, P is the 
number of poles, fୟୱሺθ୰ሻ is a magnitude limited function that 
shapes the instantaneous-induced emfs, λ୮ is peak mutual 
flux linkage, L is self inductance per phase, Rୱ is stator 
resistance per phase, vୟୱ is input voltage for phases, T୪ is 
load torque, J is rotor inertia and B is damping coefficient. 
Above state-space realization is derived based on the 
assumptions that the induced currents in the rotor are 
neglected and iron, stray losses are neglected. The detailed 
derivations of above state-space representation are given as 
in [10]. 

The drive scheme of permanent magnet BLDC motor is 
simple and shown in Fig. 1. In this drive scheme, the 
encoder gives absolute rotor position. Tୣ  are named כand I୮ כ
as reference torque command and reference current 
magnitude command respectively. In addition, in a past few 
decades, various methods have been proposed so as to 
control each phase’s currents [11-14]. In this paper, PID 
based current control system is used to regulate phases’ 
currents.  

B. Simplified Mathematical Model of PMBLDC 
Motor 
It is necessary to use a simplified model for control 

system design although simplified model does not cover the 
complete nonlinear system model that introduced above. 
This advantage is provided by the robustness of designed 
controller. The neglected dynamics of real system are 
compensated and taken as uncertainties if the designed 
controller’s robustness properties are good enough.   

The schematic of single phase PMBLDC motor is 
shown in Fig.2. This schematic contains position controller, 
which is the main purpose of this paper, current limiter that 
is caused by current saturation, current controller which 
regulates phases’ currents, and converter model that is 
derived from electronic hardware. This scheme also contains 
simplified motor’s mechanical and electrical models. 

It is assumed that the motor operating in its constant-
torque operation region and the flux producing current 
component is fixed. By these assumptions, simplified and 
equivalent model that very similar to a DC servo drive can 
be obtained and given in Fig.3. It should be noted that the 
equivalent and simplified model contains BLDC motor 
dynamics, inverter and current controller dynamics. In 
addition, the transfer function of this simplified motor model 
is given in (6).  

 

 

 

 

 

 

 

 

 

Figure. 1. Drive scheme of permanent magnet BLDC motor 

 

 

 

 

Figure. 2. Schematic of single phase PMBLDC motor 

ሻݏ௧ሺܩ ൌ ఏೝሺ௦ሻூכ ൌ ܭ ௦యା௦మሺோାሻା௦ሺோା್ሻ     (6) 

where  Kୡୡ is equivalent current controller, kୠ is 
equivalent back-emf constant and  k୲ is torque constant.  

C. System Identification 
The system identification methodology is a well-known 

process and widely used in literature. This process is useful 
when the system has a complicated dynamic [15]. In this 
paper, system identification process is used between the 
reference magnitude current I୮כand system’s actual 
position θ୰. The applied input signal to I୮כ is selected as 
swept sine signal shown in Fig.4. This signal contains all 
interested frequencies for BLDC motor operations. The 
definition of the applied input signal is given in (7). ݑሺݐሻ ൌ ߨሺ2݊݅ݏܣ ݂ሺݐሻݐ  ሻ    0   t    ܶ             (7) 

where f୧ሺtሻ is the instantaneous signal frequency of input 
signal. T is the signal’s period and  is the initial phase 
value. Definition of f୧ሺtሻ is given in (8). 

݂ሺݐሻ ൌ ௦݂௧௧ߚ௧,       ߚ ൌ ሺ ݂ௗ/ ௦݂௧௧ሻଵ/ బ்         (8) 

The parametric system model is obtained by MATLAB®/System Identification Toolbox. Bode diagram of 
defined system from I୮כ to θ୰ is shown in Fig.5. It is clear to 
say that the defined system has no unstable poles or zero.  

LQG/LTR CONTROL SYSTEM DESIGN 

The dynamics of the plants is defined above. This 
dynamics shows that the plant is minimum phase and stable. 
These conditions are needed to achieve a good recovery of 
LQG controller [16]. Nominal system plant G୮୪ୟ୬୲ሺsሻ is 
augmented with PI elements for a good reference tracking. 
New plant’s transfer function which is augmented by PI 
element is given in (9).  ܩሺݏሻ ൌ  ሻ                             (9)ݏ௧ሺܩሻݏሺܩ

where Gሺsሻ is augmented plant and Gୟሺsሻ is 
augmentation dynamics. The LQG/LTR compensator is 
designed for augmented plant Gሺsሻ. 

 

 

 

 

Figure. 3. Simplified and equivalent DC motor model 
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Figure. 4. Swept sine signal for system identification 

The proposed system that includes integral 
augmentation and LQG/LTR control system is shown in 
Fig.6. In this system GLQG/LTRሺsሻ is the proposed control 
system.  

In LQG/LTR design methodology, the poor properties 
of LQG control system is recovered at plant input or plant 
output [7-8]. In this works, input recovery methodology is 
preferred and the complete control system design procedure 
is given step-by-step below.   

1. System identification procedure defined 
above. 

2. Determine the Target Feedback Loop (TFL). 

3. LQG/LTR design 

A. Determine the TFL 
The target feedback loop must have good robustness and 

performance properties. That requirement is done by LQR 
approach. This feedback loop is used to allow the motor to 
follow reference command with no steady-state error. The 
open loop transfer function of TFL is given in (10). ܮ௨௧ሺݏሻ ൌ ܫݏொோሺܭ െ  (10)                     ܤሻିଵܣ

LQR guarantees some good properties that defined in 
(11). ห መܵሺ݆ݓሻห  1,    ห ܶሺ݆ݓሻห  1             (11) 

where Sሺjwሻ is sensitivity function and Tሺjwሻ is 
complementary sensitivity function. The TFL overcome the 
plant uncertainties and unmodelled dynamics because of 
these two guaranteed equations.  

 

 

 

 

 

 

Figure. 5. Bode diagram for studied system 

 

 

 

 

Figure. 6. Proposed control system with integral 
augmentation 

In LQR design, the selected cost function is determined 
in (12). ܬ ൌ  ሺݕכ்ܳݕ  ஶݐሻ݀ݑכ்ܴݑ                           (12) 

where Qכ and Rכ is positive semi-definite weightiness 
matrices. The main point of the selection of these 
weightiness matrices is the ratio of QכR[17] כ. In this work, QכRכ 
ratio is selected as 2e2. Determined TFL’s open loop bode 
diagram, sensitivity function (S) and complementary 
sensitivity function (T) are given in Fig.7. Solution of 
minimizing problem of cost function J is given in [18]. 

B. LQG/LTR Design 
The schematic of LQG/LTR control system is given by 

Fig.8. Step-by-step design procedure is given  below. 

i. In this section, plant, that aimed to control by 
LQG/LTR approach, is augmented plant Gሺsሻ. 
The numeric data of this plant which in state-
space form is given in Table 1. 

ii. The design specification must be defined 
before the design of control system. The rules 
of these specifications are obtained from 
robustness-performance curve that is given in 
Fig.9. The cross-over frequency, sensitivity 
function and complementary sensitivity 
function obtained by using this curve. 

iii. This step includes the LQR controller design 
is defined above. The solution of LQR 
problem is required the solution of Ricatti 
Equation (13).  

்ܲܣ   ܣܲ െ ߚߩ ்ܲܤܤܲ  ܥ்ܥ ൌ 0             
                    ܴ ؔ ܦ்ܦ  ଵఘ  ,  ܳ ؔ  (13)                                  ܥ்ܥ

 

 

 

 

 

 

 

Figure. 7. Target feedback loop, sensitivity function and 
complementary sensitivity function diagrams 

r ሻݏொீ/்ோሺܩ ሻݏ௧ሺܩ ሻݏሺܩ y
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Figure. 8. Schematic of LQG/LTR control system 

 

 

 

 

 

 

Figure. 9. Robustness-Performance curve 

The selection of matrices C is arbitrary. The free 
parameter β is robustness parameter and in many application 
the β is selected as 2. The free parameter ρ is bandwidth 
parameter and for higher bandwidth, ρ must be selected 
higher.  

iv. In this step, Kalman-Bucy filter design is 
done. By this step, GLQG/LTRሺsሻGሺsሻ 
approaches KLQRሺsI െ AሻିଵB. To obtain loop 
transfer recovery another Ricatti Equation 
must be solve (14).              ்ܣ∑  ܲ∑ െ ∑ܥଵିߤ்ܥ∑  ்ܤܤ ൌ 0              (14) 

By this solution kalman gain (15) is obtained.  ܮ ൌ  ଵ                 (15)ିߤ்ܥ ∑

The main free parameter in these equations is  µ. For lower µ 
better recovery process is done.  

v. Obtained the LTR controller is given in (16).    ܩ்ோሺݏሻ ൌ ܫݏொோሾܭ െ ሺܣ െ ொோܭܤ െ  (16)    ܮሻሿିଵܥܮ

However this form is not the final form. According to 
the plant augmentation the controller must be reform (17). ܩ்ோ,ሺݏሻ ൌ  ሻ                         (17)ݏሺܩሻݏ்ோሺܩ

vi. Final step is applied the augmentation part. 
Anti-windup must be added all integral 
elements. The detailed derivation of these anti-
windup algorithms can be found in [19]. 

In this section, the mathematical expression for the final 
operation is given in (18). 

limఓ՜ ܫݏொோൣܭ െ ൫ܣ െ ொோܭܤ െ ܫݏሺܥܮ൯൧ିଵܥܮ െ ՜ ܤሻିଵܣ ܫݏொோሺܭ െ   ܤሻିଵܣ
                              (18) 

The control system’s parameters are given in Table 2. 
Moreover, the recovery of the controller for different values 
of µ is given in Fig.10. As a result of control system design, 
there is no unstable pole-zero cancellation that is one of the 
most important specification and all desired property of 
target feedback loop is achieved.  

EXPERIMENTAL SETUP & RESULTS 

Experimental setup that is used for system identification 
and control system is given in Fig.11. Xpc target product of 
SpeedGoat Company is used for system identification and 
real-time control operations. 40 KHz PWM signal is 
produced by this product to achive current control. Desired 
position control loop updated up to 3 KHz. In this 
experiment, an EC-Motor of Maxon Motor Company is 
preferred. This motor has 171 Watt power rating and 28 V 
voltage supplied. All control algorithms is built in 
MATLAB/Simulink platform.  

Step response of the designed position controller is 
given in Fig.12. and single phase’s current shape given in 
Fig. 13. The system has neglicible overshoot and has no 
steady-state error. The overshoot that is occured in step 
response is caused by the system’s unmodelled nonlinear 
dynamics. On the other hand, there is no unstability in the 
system althought the currents of each phases and mechanical 
system have uncertanity. The main objective of the designed 
controller is said to be succesful.  

 

 

 

 

 

 

 

 

 

 

Figure. 10. Loop transfer recovery for different ߤ values 

 
Figure. 11. Experimental setup 
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Figure. 12. Step responses of BLDC motor 

 

Figure. 13. Single phase current response 

CONCLUSION 

 In this work, a LQG/LTR position controller for 
BLDC motor and its experimental validation are presented. 
It is clear to say that the proposed control system can cancel 
unmodelled dynamics and system’s uncertainities. 
Moreover, given control system is explained 
methodologically. The proposed control system meets many 
specification in robustness and perfermance. However, 
LQG/LTR linear control system is not sufficient for systems 
that require high performance specifications. In that case, 
other solutions like nonlinear controller design or 
cancellation of nonlinear effects must be spotted.   
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