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Abstract:In this study, an algorithm was developed
to guide messages from source node to destination
rodes in faulty hypercube parallel process system for
norminimal routing. In each step the nearest node to
destination node is algebrically determined and this
node is chosen as a new source node, therefore the
propagation of the message toward the destination
was increased.This algorithm was simulated on a
hypercube simulation software and it was seen that
good results was obtained. The message guiding was
based on a formal logic. Any disadvantage wasn't seen
on the performans of this algorithm, even the number
of faulty nodes was too much. However this algorithm
has great performans of finding route over other route
fing algorithms. ’

1. Introduction

Recently, hypercube multicomputers have been
drawing considerable aftention from many
researchers. A large amount of research effort has
been directed towards hypercube systems. Due to their
regular structure and low diameter, hypercube
multicomputers are well suited for parallel processing.
Several research and commercial hypercube machines
have been built in recent years[1]. A variety of routing
algorithms have been proposed for hypercube systems
in the past. However, most of these algorithms are not
suitable for routing messages when nodes fail in a
hypercube. There also has been a number of fault-
tolerant routing strategies proposed in the previous
research{3,10,11,12,13].

Efficient algorithms for routing a message to its
destination are critical to the performance of parallel
computers. A routing mechanism determines the path
a message takes through the network to get from the
source to destination node. It takes as inmput a
message’s source and destination nodes. It may also
use about the state of the network. It returns one or
more paths through the network from the source to
destination node[9].

Routing mechanisms can be classified minimal or
nonminimal. A minimal routing mechanism always
select one shortest path between source and
destination node. In minimal routing scheme each link
brings a message closer to its destination, but the
scheme can lead to congestion in parts of the network.
A nonminimal routing scheme, in contrast, may route

the message along a longer path to avoid network
congestion. Nonminimal routing algorithms are
usually used for faulty-tolerant because they are able
to find alternative paths when all the minimal paths
are faulty[9]. .

In part II the properties of cube algebra and cube
transformation are given. In part Il an example is
given about the proposed method. In part IV with the
nonminimal algorithm, a simulated example is given.
And finally the results of the simulations is discussed.

2. Notations and Properties of Cube Algebra

An n-dimensional hypercube can be modeled as a
graph O, (V,E),with the node set V(Q,) and edge set
E(Q,), where IVI=2", IEI=n2""'. Each node represents
a processor and its memory(Figure 1.). Each edge
represents a communication link between a pair of
processors. The 2" nodes are distinctly adressed by #-
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Figure 1. A generic node architecture

bit binary numbers with values from 0 to 2*'. Each
node has links at » dimensions, ranging from 0
(lowest dimension) to »n-I(highest dimension),
connecting to n neighbors. An edge connecting nodes
u and v is said to be at dimension j or to be the jth
dimensional edge if their binary adresses u and v differ
at bit position j only. An edge in O, can also be
represented by an n-character string with one hyphen
(" and n-! binary symbols {0,1}. If edge
e=(u,v) eE(Q,), u and v are jth dimensional neighbors
to each other, then the cdge can be represented by the
binary address of node u or v with bit position j being
replaced by a hyphen (*). For example, 00*!
represents edge e=(0001,0011) A complete hypercube
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itself can be considered special subcube, where all the
bits of its address take the » value[1]. Each node is
also a special subcube in which no bit of its address
takes the * value, and is called O-cube. Each link has
one bit that takes the value * and is caled 1-cube, a
quadrangle is called 2-cube and has two bits that take
the value * . A cubes 3-cube, if its address has three *,
etc[1,2]. In a hypercube there may be faulty nodes
and/or faulty links. In this case the hypercube is called
faulty hypercube. In case of nonfaulty nodes and links
exist in n-cube it is called complete cube.

The cube algebra has a set of elements as C = {1, 0,
»}. Earlier, the cube algebra was applied in connection
with the presentation of the boolean functions in form
of cubes and minimization[4). These and other studies
were considered with more detail and generalized
[5,7). This algebra also used for compact
minimization of multiple and single output
combination circuits[6] and for some algebraic
transformations on hypercube[8]. Later the operations
of cube algebra also used for subcube allocation in
hypercube{14].

Now we examine the operation # -subtraction over
subcubes and cubes. This operation is sometimes
called # -operation or sharp product. Let 4 = a;aj ...
a;..a, and B=">byby..b;... by, then the result R of

the operation 4 # B will be determined by two
transforms, as follows:

Step 1. (4,8) 22> ¥, where V=vpv..v;.. vy
Vv .

Step2. A — >R

In the first step the element v;
determined as follows:

I If a;=b;, then v; =2z

2If a;=» and b; €{0,1}, then v;= b ;;

3)If bi= =, then Vi=Z)

4)If ayb; €{0,1} and a;=b;, thenv;=y.
According to formed components of vector V the
result R = 4 # B in the step 2 may be determined as
follows:
1) If such iefl,2,...,n} exists for which v; = y, then
A—V—)A, that means A # B = 4;
DI vy=z forall i={12..,n}, thn A——>g,
that means A # B=0;
3)If Vi V-V €{0,1} for the coordinates j, £, ...,

will be

4
m, then A~ {a;a;..aj_ 1vja,|...ay,
810)..aF_[Via+ [--8n, Q1A [VinGpy 4. [... 05}
3. Method
The method proposed in this work could be

investigated in three stages. In the first stage the faulty
nodes are subjected to coordinate substraction from

nonfaulty cube. By applying this operation, F the
faulty nodes set are minimazed to F,,, set.

Here, neighbour nodes related to each other are
represented together. In the second stage is the
transformation applied which is the coordinate
substraction mentioned before.

The new source nodes set are found by subjecting
these two operation with the source node together. (In
this set the initial source is present). Afterwards, the
initial source is substracted from this set and pure
source node sets are found. The initial source is
included into F,;, set. In the third stage, the recently
obtained sources are compared algebrically with
destination nodes. This operation is repeated up to
reach destination node.

Now we search the method for determination of
nonfaulty and maximal subcubes, each of which
includes a current source in every stage.

Assuming A=aja;..a;..ay, and 591952 Pji- Pin
are the codes of the source node and any faulty node,
respectively. Then the cube Jj may be transformed to
cube, 9i=q; 19j2--9ji--9jn - according Nadjafov and
Kahramanov([6]

1. if @i=a; then O;— gy
if %i=9 or Pji=* then Oj=»
(j=1,...1; i=l,...n.)

A
fJ:_)Q]'=Ml €0
2. The set of O, is formed by taking out the

!
nonmaximal cubes from the set of Q = {Q}-} j=r

3. The set of Om is #-subtracted from complete
n-cube. Nonmaximal and repeated cubes are taken out
from this result and thus, the set of D4 including the

source node A is formed.
4. The cubes in the set Q,,; are logical

intersected, in the result of which the cube Dy is
formed.

5. All the cubes with dimensions » € {1,2,....n-
2} inthe set Q,,> are transformed to n-r pieces (n-

I)-cubes, ie. 7 x 1 > (n-1) x (n-r). The repeated
cubes in the result of transformations are taken out
and the set D, is formed.

6. The sets D; and D, are logical intersected in
the result of which the set of subcubes D, including
the source node 4 is formed.

Example: For 4 = 0010, Fuin = (0201, 0141,
+100, 101+, 0000} we find all SNMS which includes
the node 4. On the first and second methods we mark

A
the transform 6——)QJ €0 as M; and M,
respectively. The steps of the definition of SNMS are
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the same for the corresponding above mentioned
methods. According to :
1. Q = My: (Fpin » A) = My: ({0s01, 014,

+100, 101+, 0000},0010) = {«x01, 1wl »I0%, Iswn
w0},

2. Oy = {#l o], Inat, 2204},

3. Dy = wesx # Qp = wans # {sl%, Taxw,
w+04}={001 % 0+10}.

4. Nonminimal Routing Algorithm

The three stage explained in this method’s part are:
1. Subcube Building Algorithm

1I. Transformation Algorithm

II1. Turn to Destination Algorithm

// Subcube Building Algorithm //

Begin

SonucMax:=0;

Repeat

for i:=1 to Grouplnumber-1 do
Kupl:=Group1Datafi];
Kup2:=Group2Data[1};

Begin
lenght(Result):=lenght{cubel);
For.i=l to Length(cubel) Do

begin

if (Cube2 [i]="*") Or (Cubel [i]= Cube2(i]) Then
Resultfi]:='Z’;

if (Cubel[i]='*) And (Cube2(i]#*) Then
Result[i]:=Invers(Cube2{i]);

if (Cubel[i]  ['0",'1']) And (Cube2[i] > ['0''1]) And
(Cubel[i]# Cube2{i]) Then Resultfil:="y’;

End;

if 'y'eResult then begin Result:= Cubel;
IntervalResultAdd(result); Exit; End;
OldResult:=Result;

ZNumbert:=0;

for i:=1 to Length(Result) do if Result{i}]=Z' Then
Begin inc(ZNumber); ZPosition[ZNumber}:=i; End;
StarNumber:=0;

for i:=1 to Length(Cubel) do if Cubel[i]="* then
begin inc(StarNumber ); StarPosition [StarNumber ]:=i;
End;

if ZNumber=Length(Result) Then

Begin IntervalResultAdd(F"); exit; End;

for i:=1 to Length(Result) do

if Result [i]='Z' then Result [i]:=Cubel[i];

Position:=0;

for i:=1 to starNumbert do

begin |

if OldResult[starPosition[i]]='Z then Continue;
inc(Position);

EndString{Position]:=Copy(Cubel, 1,StarPosition(i]-1);
EndString[Position]:=EndString{Position]+
Result[StarPosition [i]];

EndString [Position ]:= EndString[Position}+Copy(Cubel,
StarPosition {i}+1 ,Length(Cubel)- StarPosition [i]);
for k:=1 to ZNumber do
EndString[Position][Zposition[k]]:=Cube1{ZPosition[k]];

End;

for i==1 to StarNumber do if EndString{i]+ " Then
IntervalResultAdd (Endstring[i]); End;

Extract elemens from Group2
GrouplData:=Results;
Group1Number:=ResultMax+1;

if Group2Number>1 Then V:=0;

Until Group2Number-1=0;

End;

/ Transformation Algorithm //
Procedure Transformasyon;

Var

k tinteffer;

Begin

for k:=1 to 255 do AraDizi[k}:=";

For k:=1 to HataliAdet do begin
AraDizi[k]:=YildizUret; { Dizi uygun bir bi¢imde
boyutlandinliyor }

For t:=1 to Length(HataliNodlar[1]) do

if HataliNodlar{k][t]<>Source{t] Then
AraDizi{k][t]:=HataliNodlar{k]{t] Else AraDizi[k]{t]:="*;
End;

SonucMax:=0;

For k:=1 to HataliAdet do AraSonucEkle(AraDizi[k]);
Sadelestirme;

For k:=1 to SonucMax do AraDizi{k}:=Sonuclar{k];
AraAdet:=SonucMax;

End;

// Turn to Destination Algorithm //

Procedure Hedefeyonel
Begin
For i:=1 to SonucMax Do Begin

S1:=Sonuclar{i};
§2:= hedefin ads;
FarkAdet:=0;

p=l

For k:=Length(S1) Downto 1 do Begin

if S1[k]=S2[k] Then FarkAdet:=FarkAdet+J;

p=p*2; End;
Dizi[i]:=FarkAdet;
DiziX[i}:=i; End;
For i:=1 to SonucMax-1 do
For j:=i+1 to SonucMax do

if Dizi[i]<Dizi[j] Then Begin
Gecici=Dizi{i];
Dizifi]:=Dizi[j];
Dizi[j]-=Gecici;
Gecici:=DiziX[i];
DiziX[i]:=DizX[j);
DiziX[j]:=Gecici

End;

For i:=1 to SonucMax do DiziDatafi]:=Sonuclar[DiziX[i]};
For i:=1 to SonucMax do Sonuclar[i]:=DiziDatal[il;

End;

Example: Source node: 00000, destination node: 11111 and
Faulty nodes ={ 00110, 00101, 01111, 10000, 10001,
10011, 10101, 10111, 11001}

The message orientation from source to destination
node is as shown below:
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00000—01000—>01010—-01110-01101—11100—
11101-»>11111

The visualization obtained from the results is shown in
Fig.2

@ Fauity node
O Nonfaulty node

Figure 2. Nonminimal routing a!gorithm example for 5-dimensional

faulty hypercube

4. Conclusions

In this study, an application of nonminimal routing
message orientation algorithm of cube algebra has
been implemented. The method which was used in the
shortest path routing algorithm is simulated in
hypercube simulator as nonminimal routing algorithm.
When there is a congestion in message forwarding (if
all the neighbours of the current node are faulty or the
current node is busy), the message is going on his own
way using the nearest node before that point.In the
cases where practically finding the shortest path is not
important, it is appearing a fast message forwarding
algorithm. In the same algorithm, the application of
the destination node incrementation is appearing as an
advantage.

References

(1] Y. Saad and M.H.Schultz, “Topological Properties of
Hypercubes”, IEEE Trans. on Comput. volC- 37, no. 7,
867-872, July 1988.

[2] M.Chen and K.G.Shin, “Processor Allocation in An n-
Cube Multiprocessor Using Gray Codes” IEEE
Transaction on Computers, vol.C-36. no.12, pp. 1396-
1407, 1987.

[31 Youran Lan, “An Adaptive Fault-Tolerant
Routing Algorithm for Hypercube Multicomputers,”
IEEE Transactions on Parallel and Distributed
Systems. vol. 6, no. 11, pp. 1147-1152, Nov. 1995

[4] S.S. Kahramanli. and NM. Allahverdi, “Compact
Method of Minimization of Boolean Functions with
Multiple Variables,” Proc. Intern. Symp. of Application of
Computers, pp. 433-440, 1993,

[5] R Miller, “Switching Theory” vol. 1, Combinational
Circuits, Moscow, 1970.

[6] EM. Nadjafov and S.S. Kahramanov, “On the
Synthesis of Multiple Output Switching Scheme,”
Scientific Notes of Azerbaijan Institute of Petroleum and
Chemistry, vol. 9, no. 3, pp. 65-69, 1973.

[7] JP. Roth, “Algebraic Topological Methods for The
Synthesis of Switching Systems in n-variables,” The
Institute for Advanced Study, Princeton, , ESP56-02, New
Jersey, 1956.

{8] S.S. Kahramanh and N.M. Allahverdi, “Algebraic
Approach to Transformation on Hypercube System,”
Mathematical and Computational Applications, vol.1,
no.1, pp. 50-59, 1996.

(9] Jose Duato, Sudhakar Yalamanchili and Lionel Ni,
“Interconnection Networks,” /EEE Computer Society
Press, 1997,

[10] Ge-Ming Chiu and Shui-Pao Wu, “A Fault-
Tolerant  Routing  Strategy  in Hypercube
Multicomputers,” IEEE Transaction on Computers,
vol. 45, no. 2, pp. 143-155, Feb. ,1996.

[11] T.C. Lee and J.P.Hayes, “A Fault-Tolerant
Communication Scheme for Hypercube Computers,”
IEEE Computer, vol. 26, no.2, pp. 62-76, Feb. 1993.
[12] J. Duato, “On the Design of Deadlock-Free
Adaptive Routing Algorithms for Hypercubes:
Theoretical Aspects,” Proc. Second European
Distributed Memory Conf., pp. 234-245, 1991

[13] P.T. Gaughan and S. Yalamanchili, “Adaptive
Routing Protocols for Hypercube Interconnection
Networks,” Computer, vol. 26, no.5, pp. 12-23, May
1993.

{14] S. Duit and JP. Hayes, “Subcube Allocation in

Hypercube Computers,” JEEE Trans.Comput, vol.40,
no.3, pp. 341-352, 1991.

293






