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ABSTRACT
In this study, a simple method based on the adaptive neuro-
fuzzy inference system is presented for computing the
association probabilities.  The computed association
probabilities are used to track the single target in the
cluttered environments. The adaptive neuro-fuzzy inference
system is trained with the hybrid learning algorithm, which
combines the least square method and the backpropagation
algorithm. The tracks estimated by using the method
proposed in this study are in good agreement with the
original tracks. Better accuracy with respect to the well
known probabilistic data association algorithm is obtained.

I. INTRODUCTION
The target tracking [1, 2] is an important issue in military
surveillance, ballistic missile defense, satellite defense
and air traffic control systems. The objective of the target
tracking is to partition sensor data into sets of
observations, or tracks produced by same source. Once
tracks are formed and confirmed, the number of targets
can be estimated and parameters such as position,
velocity and acceleration can be obtained from each
track.

The probabilistic data association filter (PDAF) approach
[1] is one of the methods commonly used in the target
tracking. This approach is a bayesian approach that
computes the probability that each measurement in a
track’s validation region is the correct measurements and
the probability that none of the validated measurements is
target originated. The association probabilities and all of
the validated measurements are used in the PDAF to
update the target state. Several methods [3, 4] varying in
accuracy and computational effort have been presented
and used to calculate the association probabilities.

The problem in the literature is that a method that is as
simple as possible for calculating the association
probabilities should be obtained, but the estimated tracks
obtained by using these association probabilities must be
in good agreement with the true tracks. In this study, a
simple method based on adaptive neuro-fuzzy inference
system (ANFIS) [5, 6] is presented for efficiently solving
this problem. Fast and accurate learning, excellent
explanation facilities in the form of semantically
meaningful fuzzy rules, the ability to accommodate both
data and existing expert knowledge about the problem,
and good generalization capability features have made
neuro-fuzzy systems popular in the last few years [5-10].
Because of these fascinating features, the ANFIS in this
study is used to accurately compute the association
probabilities. These computed association probabilities are
used to track the single target in the cluttered
environments.

The ANFIS combines the benefits of artificial neural
networks and fuzzy inference systems (FISs) in a single
model. The ANFIS can be considered as a class of
adaptive networks which are functionally equivalent to
FISs. Usually, the transformation of human knowledge
into a fuzzy system (in the form of rules and membership
functions) does not give exactly the target response. So,
the parameters of the FIS should be determined optimally.
The main aim of ANFIS is to optimize the parameters of
the equivalent FIS by applying a learning algorithm using
input-output data sets. The parameter optimization is done
in a way such that the error measure between the target
and the actual output is minimized.  In this paper, the
hybrid learning algorithm [5, 6], which combines the least
square method and the standard backpropagation
algorithm, is used to identify the parameters of ANFIS.



In previous works [11-19], we also successfully
introduced artificial neural networks and FISs to compute
the various parameters of the triangular, rectangular and
circular microstrip antennas. In the following sections,
the ANFIS is described briefly, and the application of
ANFIS to the calculation of the association probabilities
for single target tracking is then explained.

II. ADAPTIVE NEURO-FUZZY INFERENCE
SYSTEM (ANFIS)

The FIS is a popular computing framework based on the
concepts of fuzzy set theory, fuzzy if-then rules, and
fuzzy reasoning [6]. Among many FIS models, the
Sugeno fuzzy model is the most widely applied one for
its high interpretability and computational efficiency, and
built-in optimal and adaptive techniques. The Sugeno
fuzzy model provides a systematic approach to generate
fuzzy rules from a set of input-output data pairs.

The ANFIS is a FIS implemented in the framework of an
adaptive fuzzy neural network. A typical architecture of
ANFIS is depicted in Figure 1, in which a circle indicates
a fixed node, whereas a square indicates an adaptive
node. For simplicity, it was assumed that the FIS has two
inputs x and y and one output z. The ANFIS implements
a first-order Sugeno fuzzy model. For this model, a
typical rule set with two fuzzy if-then rules can be
expressed as

Rule 1: If x is A1 and y is B1, then 1111 ryqxpz ++=        (1a)

Rule 2: If x is A2 and y is B2, then 2222 ryqxpz ++=     (1b)

where Ai and Bi are the fuzzy sets in the antecedent, and
pi, qi and ri are the design parameters that are determined
during the training process. As in Figure 1, the ANFIS
consists of five layers:

Layer 1: Each node in the first layer employs a node
function given by
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membership function (MF). In this paper, the following
Gaussian MF is used.
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 where {ci, σi} is the parameter set that changes the shapes
of the MF. Parameters in this layer are referred to as the
premise parameters.
 
Layer 2: Each node in this layer calculates the firing
strength of a rule via multiplication:
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Layer 3: The ith node in this layer calculates the ratio of
the ith rule’s firing strength to the sum of all rules’ firing
strengths:
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where iω  is referred to as the normalized firing strengths.
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Figure 1. Architecture of ANFIS



Layer 4: In this layer, each node has the following
function:

2 1,    ),(4 =++== iryqxpzO iiiiiii ωω   (6)

 where iω  is the output of layer 3, and {pi, qi, ri} is the
parameter set. Parameters in this layer are referred to as
the consequent parameters.
 
 Layer 5: The single node in this layer computes the
overall output as the summation of all incoming signals,
which is expressed as:
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It is clear that the ANFIS has two sets of adjustable
parameters, namely the premise and consequent
parameters. During the learning process, the premise
parameters in the layer 1 and the consequent parameters
in the layer 4 are tuned until the desired response of the
FIS is achieved. In this paper, the hybrid learning
algorithm [5, 6], which combines the least square method
(LSM) and the backpropagation (BP) algorithm, is used
to rapidly train and adapt the FIS.
 
 When the premise parameter values of the MF are fixed,
the output of the ANFIS can be written as a linear
combination of the consequent parameters:
 
 222222111111 )()()()()()( rqypxrqypxz ωωωωωω +++++=   (8)

The LSM can be used to determine optimally the values
of the consequent parameters. When the premise
parameters are not fixed, the search space becomes larger
and the convergence of training becomes slower. The
hybrid learning algorithm can be used to solve this
problem. This algorithm is composed of a forward pass
and a backward pass. In the forward pass, while holding
the premise parameters fixed, the functional signals are
propagated forward to layer 4, where the consequent
parameters are identified by the LSM. In the backward
pass, the consequent parameters are held fixed while the
error signals, the derivative of the error measure with
respect to each node output, are propagated from the
output end to the input end, and the premise parameters
are updated by the standard BP algorithm.

III. APPLICATION OF ANFIS TO THE
CALCULATION OF THE ASSOCIATION
PROBABILITIES FOR SINGLE TARGET

TRACKING
The dynamics and measurement model of the interested
target are given by
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where x(t) is the state vector, F is the state transition
matrix, w(t) is the process noise, y(t) is the measurement
vector, H is the measurement matrix, v(t) is the
measurement noise, and t is the sampling time. The
residual for the validated measurements is given by

t)|1(tx̂H1)(ty1)(tν jj +−+=+  (10)

where |t)(tx 1ˆ + is the predicted state vector. The combined
innovation is computed by using the following formula
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where βj is the association probabilities and m is the
number of the validated measurements. The updated states
of the targets are found by using

1)K(t)υ(tt)|1(tx̂1)t|1(tx̂ +++=++  (12)

where K(t) is Kalman gain. In order to find the updated
states of the targets, in this study the association
probabilities βj are computed with ANFIS. For the ANFIS,
the inputs are the absolute values of the elements of the
measurement innovation vector νj ( |~| jx  and |~| jy ), and
the output is the association probabilities βj. The ANFIS
model used in calculating βj is shown in Figure 2.
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aining an ANFIS with the use of the hybrid learning
orithm to compute the association probabilities

volves presenting it sequentially with different sets
|~

jx  and |~| jy )  and corresponding desired βj values.
fferences between the desired output βj and the actual
tput of the ANFIS are evaluated by the hybrid learning
orithm. The adaptation is carried out after the

esentation of each set ( |~| jx  and |~| jy ) until the
lculation accuracy of the ANFIS is deemed satisfactory



according to some criterion (for example, when the error
between the desired βj and the actual output for all the
training set falls below a given threshold) or when the
maximum allowable number of epochs is reached.

The values of the input variables |~| jx  and |~| jy  used in
this paper are between 0 and 1.2 km. The βj values, which
depend on the absolute values of the input variables, must
be between 0 and 1. While the values of the input
variables approach to zero, the value of βj approaches to
1. After many trials, the desired βj values, which lead to
an excellent agreement between the true tracks and
estimated tracks, are determined. The 630 data sets were
used to train the ANFIS.

The input and output data sets were scaled between 0 and
1 before training. The number of epoch was 10 for
training. The hybrid learning algorithm can dramatically
reduce the required training epochs because the training
errors are de-coupled and treated separately. The number
of membership functions for the input variables |~| jx  and

|~| jy  are 5 and 5, respectively. The number of rules is
then 25 (5x5=25). The gaussian MF is used for two input
variables |~| jx  and |~| jy . It is clear from Eqn. (3) that
the gaussian MF is specified by two parameters.
Therefore, the ANFIS used here contains a total of 95
fitting parameters, of which 20 (5x2+5x2=20) are the
premise parameters and 75 (3x25=75) are the consequent
parameters.

After training, the association probabilities (βj) are
computed rapidly by using the ANFIS for different test
trajectories. The approach proposed in this paper can be
called as ANFIS data association filter (ANFISDAF).

IV. SIMULATIONS
In this section, the performance evaluation of the
ANFISDAF proposed in this paper is presented using
different simulation studies. Three different target
trajectories shown in Figure 3 are considered for this
evaluation. A uniform clutter density was selected as
about 0.1 km-2 for all targets. In the simulation the
sampling interval was assumed to be 1 s. For comparison,
we also obtained the target tracking results of the PDAF.
Table 1 displays the performance comparison between
the PDAF and the ANFISDAF in terms of RMS tracking
error. The percentage improvement due to the
ANFISDAF is evaluated as the ratio of the difference in
the RMS error in the PDAF and the ANFISDAF to the
RMS error in the PDAF in percent. It is clear from
Table 1 that the test results of the ANFISDAF are better
than those of the PDAF. The average percentage
improvement using ANFISDAF is % 50.
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Figure 3. Trajectories of the targets



Table 1. Performance comparison between the PDAF and
the ANFISDAF

RMS Tracking Error (m)

Targets PDAF
[1, 2]

Present
Method

(ANFISDAF)

Percentage
Improvement

with
ANFISDAF

(%)
1 97.3 49.1 50
2 97.1 49.0 50
3 97.6 49.6 49

V. CONCLUSION
The ANFIS approach is presented for single target
tracking in the cluttered environments. In this approach,
the association probabilities are computed with the use of
ANFIS. These computed association probabilities are
used to determine the updated states of the targets. It was
shown that the ANFISDAF tracks are in good agreement
with the original tracks. This good agreement supports
the validity of the approach proposed in this paper. Better
accuracy with respect to the well known PDAF algorithm
is obtained. A distinct advantage of ANFIS computation
is that, after proper training, ANFIS completely bypasses
the repeated use of complex iterative processes for new
cases presented to it. Thus, the ANFIS computation is
very fast after training phase.
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