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Abstract 

 

In statistical signal processing, parametric modeling of non-
Gaussian processes experiencing noise interference is a very 
important research area. The autoregressive moving average 
(ARMA) model is the most general and important tool of 
modeling system. This paper develops an algorithm for the 
selection of the proper ARMA model orders. The proposed 
technique is based on forming a third order cumulant 
matrix from the observed data sequence. The observed 
sequence is modeled as the output of an ARMA system that 
is excited by an unobservable input, and is corrupted by 
zero-mean Gaussian additive noise of unknown variance. 
Examples are given to demonstrate the performance of the 
proposed algorithm. 

 
1. Introduction 

 
    In statistical signal processing, parametric modeling of non-
Gaussian processes experiencing noise interference is a very 
important research area. The autoregressive moving average 
(ARMA) model is the most general and important tool of 
modeling system. The problem of ARMA model order selection 
has been of considerable interest and has been applied in many 
diverse fields such as economics, engineering, signal modeling, 
and biomedical signal processing [1]. In most practical cases, 
the model order is not known. This vital and crucial step is 
ignored, chosen rather arbitrarily, or assumed to be available in 
many of the commonly employed ARMA modeling algorithms. 
For example, in spectrum analysis and modeling, the problem of 
model order selection is of most importance [2]. That is because 
the accuracy of the frequency estimates depends on the 
estimated order of the prediction filter [3]. 
    Several methods have been reported in the literature. For 
example, Akaik [4, 5] proposed an information criterion (AIC) 
and the final prediction error (FPE). The minimum description 
length (MDL) was proposed by Rissanen [6] and Schwarz [7]. 
Parzen [8] proposed the criterion autoregressive transfer 
function (CAT) method. One method by Liang et. al. [9] is 
shown to yield a level of performance for a general ARMA 
model order estimation never before achieved. This method is 
derived from the minimum description length (MDL) principle 
[6, 7]. It is based on the minimum eigenvalue (MEV) of a family 
of covariance matrices computed from the observed data. The 
MEV method does not require prior estimation of the model 
parameters that means fewer computations than the other MDL-
based algorithms. Liang et. al. showed that the MDL did not 
work well at low signal-to-noise ratio (SNR) and is 
computationally expensive. This is due to the prediction error 
used in computing MDL that is directly affected by the accuracy 

of the parameter estimates. Al-Smadi and Wilkes [10] extended 
the MEV method in [9] (EMEV) to the third order cumulants 
sequence. 
   Higher order statistics (HOS), or cumulants, have received 
attention in signal processing (see [11], [12] and reference 
therein). Research in HOS has been in existence for almost four 
decades. Several papers have been published over the past 30 
years dealing with the applications of HOS and especially that 
of the bispectrum. Examples are geophysics, biomedicine, 
telecommunications, speech processing, and economic time 
series [12]. The growth of research in digital signal processing 
with HOS has been explosive during the past 15 years. That is 
because Cumulants are generally nonsymmetrical functions of 
their arguments. Hence, cumulants carry phase information 
about the ARMA transfer functions. Therefore, cumulants are 
capable of determining the order of ARMA models that contain 
all-pass (i.e., phase only) factors inherent in ARMA models. 
Also, cumulants are capable of identifying non-minimum phase 
systems and reconstructing non-minimum phase signals if the 
signals are non-Gaussian. In addition, cumulants of order greater 
than 2 of a Gaussian process vanish. Hence, cumulants provide a 
measure of non-Gaussianity. 
     In this paper, we present a new approach to the problem of 
ARMA model order estimation by utilizing theoretical ideas. 
The proposed algorithm is based on the minimum eigenvalue of 
a data covariance matrix derived from the observed data 
sequence using third-order cumulants. The observed sequence is 
modeled as the output of an ARMA system that is excited by an 
unobservable input, and is corrupted by zero-mean Gaussian 
additive noise. A comparison will be presented between the new 
algorithm and the EMEV method [10] for different SNRs on the 
output signal. 
 

2. Problem Formulation 
 
    Let a signal s(t) is an ARMA(p,q) process if it is stationary 
and satisfies the following equation: 
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where s(t) is the output signal and w(t) is the excitation 
sequence. The excitation signal w(t) is assumed to be zero-mean, 
non-Gaussian, independent and identically distributed (i.i.d.) 
process. The parameters a0,…, ap are the AR parameters; the 
number of AR parameters is the order p. The parameters 
b0,…,bq are the MA parameters; q is the MA order. Equation (1) 
can be written symbolically in the more compact form  
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where z-1 is the unit delay operator [ )()( ktstsz k −=− ]  
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The roots of the polynomial )( 1−zAp  are denoted the poles of 

the ARMA process. The roots of )( 1−zBq  are the zeros. 

Processes are called stationary if all poles are within the unit 
circle, and they are invertible if all zeros are within the unit 
circle [13]. We model the noisy output as 
 
                y(t) = s(t) + v(t)                                                        (4) 
                                                                             
where v(t) is additive Gaussian noise.  
   Now, the system in Equation (1) can be written in matrix 
format as 
 
                    Dpq ¤ = v                                                               (5) 
 
where Dpq is a composite data matrix such that  
 
                       Dpq = [Dp Dq]                                                     (6)  
                                
¤ is the coefficients vector,  
 
                ¤ =  [1 a1 … ap –1 -b1 … -bq]T                                  (7) 
                                            
and v represents the modeling error. The data covariance matrix 
is obtained as  
 
           Rpq = [Dpq]TDpq                                                              (8) 
 
Liang’s et. al. MEV method [9] is based on the MDL [6, 7] and 
leads to the criterion 
 

               JMEV(p,q) = )(/1
min )( qpNN +λ                               (9) 

                                               
where minλ is the minimum eigenvalue of Rpq, p is the number 
of AR parameters, q is the number of MA parameters, N is the 
length of the observed noisy sequence. 
    The MEV criterion calculates a table of JMEV(p,q) for all 
values of p and q. The table is organized so that p increases from 
left to right while q increases from top to bottom down the table. 
The search method utilizes row- and column-ratio tables. The 
tables are formed by dividing each row/column of the JMEV(p,q) 
by the previous row/column. An estimate of the AR order, p, is 
set equal to the column number that contains the minimum value 
of column ratio table. Similarly, the MA order, q, is set equal to 
the number of the row having the minimum value of the row 
ratio table.                                                    
      Recently, Al-Smadi and Wilkes [10] proposed an extended 
MEV criterion to (EMEV) using third-order cumulants. The 
extension was made by multiplying both sides of Equation (1) 
by s(t+m)s(t+n) and taking the expectation which results in 

  
Csss(m,n) + a1Csss(m+1,n+1) + … +apCsss(m+p,n+p) =Cwss(m,n) 
+ b1Cwss(m+1,n+1)+…+bq Cwss(m+q,n+q)                           (10) 
 
The system in (10) can be represented in a matrix form 
analogous to (5), that is 
 

                       )3(
pqC  ¤ =  v(3)                                                  (11)  

                                                                  
where  v(3) represents modeling error in the cumulant domain, 
and 
 

                )3(
pqC  = [ )3(

sssC     )3(
wssC ]                                        (12) 

                                                          
with  )3(

sssC  containing the cumulants of the observed output 

sequence and  )3(
wssC  containing the cross-cumulants of the input 

and output sequences. Hence, the data covariance matrix of third 
order cumulants is  
  

                            � = [ )3(
pqC ]T )3(

pqC                                      (13) 

                                                                           
Notice that �  is symmetric and positive semidefinite. The 
EMEV criterion becomes 
 
                        J(p,q) = )(/1

min )( qpNN +ψ                          (14) 
                                                       
where minψ  is the minimum eigenvalue of the third order 
cumulant covariance matrix �. In the ideal case, if p and q are 
chosen such that p ≥  pt and q ≥  qt (where pt and qt are the true 
orders), then v(3) = 0 and from (11) and (13) it follows that minψ  
will be zero [10]. That is,  
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for p = 0,1,…, pmax and q = 0,1,.., qmax. Hence, the J matrix 
forms an infinite flat plane of zeros in the pq-plane. Therefore, 
the correct model order lies in the corner of this flat plane. To 
look for the corner where J(p,q) drops sharply, the EMEV 
method utilizes the row/column ratio tables as in the MEV 
method.  
   We will now investigate a new method to locate the corner 
that can be justified. The method is based on theoretical 
viewpoints and is derived from the third order covariance 
matrix, J, in Equation (15). Notice that if p (or q) is selected less 
than pt (or qt), then the modeling error will be significant. That is 
because the model does not have enough parameters to fit the 
available signal very well. Hence, the J will be significantly 
large. In theory, the corner (pt,qt) can be detected by 
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transforming the cost function into two vectors; namely, row 
vector and column vector.  
     The column vector will have an estimate of the order of the 
AR part while the row vector will have an estimate of the order 
of the MA part. The proposed method proceeds as follows. 
 

2.1. Autoregressive Order 
 
The AR order is determined by transforming the J matrix into a 
row vector. Starting at the left column in (15), the entries of 
each column are multiplied together to give one value. That is, 
the multiplication of the elements of each column will give one 
value for each column. Since we have pmax columns, we will 
have pmax values in this row vector. The entries of this vector 
will be nonzero up to column pt. That is, multiplication of the 
elements of any column vector in the region p>pt will be 
theoretically zero. Hence, the row vector will contain a number 
of pt nonzero entries that is the AR order. Therefore, the number 
of the entry at which the elements of this vector change from 
nonzero to zero is considered an estimate for the order of the AR 
part. 
   In practice, the case is not ideal. Therefore, the error will not 
be zero but will be small. Hence, most of the entries in the J 
matrix will not be zeros in the region p>pt. Thus, in order to 
locate the cell that determines the proper AR order, the 
following procedure was developed. Each entry in the row 
vector is divided by the previous value. The location of the 
maximum drop between two successive entries in the row vector 
is used to determine the correct orders for the AR parts.  

2.2. Moving Average Order 
 
The MA order is determined by transforming the J matrix into a 
column vector. Starting at the top row in (16), the entries of each 
row are multiplied together to give one value. That is, the 
multiplication of the elements will give one value for each row. 
Since we have qmax rows, we will have qmax values in this 
column vector. The entries of this vector will be nonzero up to 
row qt. Hence, multiplication of the elements of any row vector 
in the region q>qt will be theoretically zero. Thus, the column 
vector will contain a number of qt nonzero entries. Therefore, 
the number of the entry at which the elements of this vector 
changes from nonzero to zero is considered an estimate for the 
order of the MA part. 
In practice, the case is not ideal. Therefore, the error will not be 
zero but will be small. Hence, most of the entries in the J matrix 
will not be zeros in the region q>qt. Thus, in order to locate the 
cell that determines the proper MA order, the following 
procedure was developed. Each entry in the column vector is 
divided by the previous value. The location of the maximum 
drop between two successive entries in the column vector is 
used to determine the correct orders for the MA parts. 
 

3. Simulation Examples 
 
The proposed ARMA model order selection from only the 
observed noisy output data has been tested on a number of 
simulated examples. A number of experiments were performed 
with different seeds for each experiment. In these experiments, 
the proposed method has been compared with the EMEV 
method at different signal to noise ratio (SNR) on the output 
sequence. The computations were performed in MATLAB. A 
finite length of N=2000 points was considered in each 

experiment. The driving input sequence is not observed. 
However, it is needed for computing third order cross-cumulants 
to construct the matrix )3(

wssC . Therefore, the technique in [10] 
was used to estimate the input sequence. 
 
Example 1: The time series to be considered is given by [14] 
 
               s(t) –0.8 s(t-1) +0.65s(t-2) = w(t) + w(t-2)             (16)  
                                                
This model has two poles and two zeros, ARMA(2,2). The poles 
are located at 0.4 ± j0.7. The zeros are located at ±j. The 
observed time series is y(t) = s(t) + v(t). The excitation sequence 
w(t) consists of zero-mean and i.i.d. exponential distribution. 
The noisy output was generated with Gaussian measurement 
additive noise at different SNRs. The ARMA model order was 
then estimated by performing 100 independent simulations for 
both techniques. Each simulation trial has noise with different 
seeds. The results of both techniques are displayed in Table 1.  
 
Example 2: The time series to be considered is given by [15] 
 
           s(t) – s(t-1) + 0.5s(t-2) = w(t) - 2w(t-1) + 2w(t-2)      (17)   
                        
This model has two poles and two zeros. The poles are located 
at 0.5 ± j0.5, and the zeros at 1 ± j. Note that this is a rather 
difficult example, since the model contains an inherent all-pass 
factor. The noisy output was generated as in the previous 
examples. Then the ARMA model orders were estimated using 
the EMEV and the proposed methods. However, the driving 
input sequence was assumed to be observed. A comparison of 
the EMEV and the proposed method is displayed in Table 2. 
 

Table 1. Model order estimation results for Example 1 
 Number of correct estimates 
SNR(dB) EMEV method Proposed method 
-10 0 2 
-8 4 6 
-6 12 14 
-4 14 16 
-2 32 36 
0 54 64 
2 74 84 
4 86 90 
6 100 100 

 
Table 2. Model order estimation results for Example 2 

 Number of correct estimates 
SNR(dB) EMEV method Proposed method 
2 8 8 
3 28 28 
4 32 32 
5 60 64 
6 84 86 
7 96 100 
8 100 100 

 
4. Conclusions 

 
A new approach for selecting the model order for ARMA 
models has been presented. The method presented is based on 
the minimum eigenvalue of a data covariance matrix derived 
from the observed data sequence using third-order cumulants. 
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The proposed algorithm searches for the cell that locates the 
orders (p and q) in the tabulation of the minimum eigenvalue of 
the third order covariance matrix J. Numerical examples were 
given that illustrated the high accuracy of the results that can be 
obtained with this approach. 
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