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Abstract: The power approximation of boundary
conditions in connected regions as analytical method
and finite element method (FEM) as numerical method
are used to solve 2D magnetic field problem within the
window and the gap of the magnet, considering the core
uniform saturated. Expressions of inductance and
magnetic field are given. The results obtained from two
methods are compared.

L. NTRODUCTION

The analysis and design of solenoid and plunger-type
magnet is difficult and complicate. This state is become
by the nature of its force-stroke characteristic. This
characteristic is essentially determined by very great
leakage flux in the gaps.

In this paper, magnetic flux within the magnet window
is calculated from power approximation of boundary
conditions in connected regions. Expression of
inductance is determined from energy of the magnetic
field. The result obtained from this method is compared
with that of finite element analysis. A rectangular
plunger section is shown in Fig.1. Leakage flux can be
considered in-plane. The computed domain for power
approximation of boundary conditions method is shown
in Fig.2. In FEM, only half section of magnet is
modelled because of the symmetry. Symmetry axis is
also shown in Fig.2.

I1. THE MAGNETIC FIELD PROBLEM
Assuming 2D magnetic field and uniformly saturated
core, vector potential A in the region I and II has only
one component which is in z direction. The governing
equation for the problem is

v.(Lvay=-J. )
u

For 2D field, (1) is reduced in the following form [1],
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where u is permeability, 4, is the component of A and
J is current density in the coil. According the power
approximation of boundary conditions method in
connected region, the vector potential in the coil region
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Fig.1. Plunger-type magnet.

The flux densities in the same domain are
04,

B., =
xf (1)
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In equations (3), (4) and (5), sh and ch are hyperbolic
functions

Aa=2b=vé=kr 6)
and the coefficients c; and d, result from the condition
for result from the condition for y=0 and for y=a. B,
and B,; are the components of magnetic flux densities.
8. is the equivalent gap and can be calculated as follows
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Fig.2. The computing domains.
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The coef*.cients a;, as b, and b, are obtained from
related  conditions. These conditions give the
coelticients as follows.
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The permeabilities g (i=/...3) are permeabilities that
are portion of the core. The constant G is derived from
formula (3) and the condition 4{x,0)=4,(x,0), xe (0,3),
which gives

2
2 ch(2,x)
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Integrating between 0 and & and dividing by & we obtain
the mean value of G(x)
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The vector potential of the magnetic field in the region
Il is obtained from (1) and related boundary conditions

121,
Ap(xy) = #ol{yTH‘ + Zbk M . cos(\ar):l. (12)
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The components of flux densities By and B, are
obtained in same manner as in the region I.

III. THE ELECTROMAGNET INDUCTANCE
The energy of the magnetic field in the domain ¥
limited by the surface S can be calculated with formula

(3]
W=§[£A.Jdv+i(A,xH,)-dsJ (13)

where A, and H, are the tangential to limit surface §
components of the vector potential and of the magnetic
field.

The energy of the in-plane magnetic field limited by
cylindrical surface S on which the magnetic potential
A=0, considering (3), will be (for 1 m depth)
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(14)
The partial linear inductance of the electromagnet coil
(without end winding) in [H/m], considering the
symmetrical domain, is given by
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where # is the number of turn of the coil.

IV. FINITE ELEMENT FORMULATION of THE

MAGNETIC FIELD and INDUCTANCE of COIL

The flux distribution in the cross-section of
electromagnetic devices is generally described by
Poisson equation and given for 2D field in formula (2).
The problem can be uniquely described if the source
current distribution and boundary conditions are
specified. Based on the calculus of variation, the
problem defined by equation (2) is identical to
minimizing a functional F defined as:

Iopl(4Y 1({a4Y
F-E.U;[g) +;[5J dxdy—IJAdxdy.(l6)

If the double integrals in (16) taken over on a finite
element (such as a triangle), FEM system of equation is
derived as follows

1
;[K}{A}= o} an

[K] is global element matrix, {A} is the potential vector
at node and {J} is the current density vector.
Theoretically, the inductance is due to all flux that
crosses the coil, and may be calculated by finding the
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energy stored in the coil and equating it to the energy
stored in an equivalent inductance.

1

!
— 2 = —
Sl =2 J'J.A dv. (18)

For a 2D system, the inductance is

(19)
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where I is the current density in the coil, N is the

element number, M is the node number of element used

for discritization of the domain, 4; is the vector potential

at ith node and « is the shape function of element [4].

Final form of the inductance in finite element terms

becomes

;X
L=—r (21)
i

where A, is the element area. In inductance calculation,
only coil elements are considered in formula (21)[5].

The finite element mesh used in analysis is shown in
Fig.3. The six-node triangular element is used for the
analysis. Because of the symmetry, the half of the
geometry is modelled for convenience. In finite element
mesh shown in Fig.3, 868 elements and 1805 nodes is

used. For different & values, element and node number
is variable. The flux distribution obtained for 400000
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Fig.3. Finite element mesh.

Table.1
Dimensions of the coil to be analysed (in m)

Coil height 0.05
Coil width 0.0125

Core width, u;=c 0.01
Gap width, & 0.0025

S5 0.02

Coil turn, n 200

A/m® current density in the coil is shown in Fig4.
Dimensions and the other values of the magnet are
shown inTable.1.

The relative permeability of the core is assumed 1000
and G is obtained as approximately 0.2 for the magnet
geometry given in Table.l. The variation of coil
inductance obtained from analytical and numerical
solutions for different & values is shown in Fig.5.

|

Fig.4. Flux distribution for 400000 A/m’ current density.

In both analysis, it is assumed that the core is
unsaturated and the permeability of the plunger is equal
to the permeability of the core.

Considering u=, the maximum of A(x,y) for x=a,
y=b, and since A(x,-c)=0, the maximum magnetic flux
will be in the core cross section which pass through the
point (a,b).

For pu~=o, the coefficients (8) and (9) become

]
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and coefficient (7) becomes

(22)

5. =5+8 =
u,
and the expressions for ¢, and d; are also simplified.

(23)
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Fig5. Coil inductance vs § obtained from analytic and FEM solutions.
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