
Finger vein biometric systemImage

Acquisition

Modified IR

Webcam

Image

Preprocessing

Feature

Extraction

Template Matching

Score >

Threshold? Reject

Accept

Database

Extracted

Template

Stored

Template
Enrollment

Verification

Fig. 1. Conceptual Design of Proposed Biometric System

Personal Verification using Finger Vein Biometrics

in FPGA-based System-on-Chip

M. Khalil-Hani, P.C. Eng
VLSI-eCAD Research Laboratory (VeCAD)

Faculty of Electrical Engineering, Universiti Teknologi Malaysia

81310 Skudai, Johor, Malaysia

khalil@fke.utm.my, peichee84@hotmail.com

Abstract— As security and privacy protection have become

important today, biometric-based personal verification has

also increasingly gain popularity. However, biometric

technology applies complex, compute-intensive image

processing algorithms which demand to be executed on

powerful computers for acceptable processing times. This

prevents biometric systems to be used in applications that

require low-cost embedded solutions. This paper presents a

novel approach to personal verification that utilizes

infrared finger vein biometrics implemented in an FPGA-

based System-on-Chip platform. To improve performance,

we apply the hardware-software co-design approach, using

hardware acceleration for the image preprocessing tasks

and image buffer management while leaving feature

extraction and template matching to software. The system

is prototyped on an Altera Nios2 FPGA development board

running the Nios2-Linux RTOS at 100MHz clock. The

proposed finger vein biometric system achieves a matching

accuracy of EER (average) of 0.08% and a verification

processing time of 1.27 seconds, demonstrating that the

design approach taken can be effective for embedded vein

biometric authentication system.

1. Introduction

Personal verification systems based on biometrics are more

reliable than the password-based systems, since biometric

characteristics cannot be lost or forgotten. Also, biometric

features are difficult to replicate, and the user is required to be

present for the authentication process [1]. While biometric

traits such as face, fingerprint, iris and voice [2-5] have been

well studied, and are considered as the traditional ones,

biometrics utilizing vein patterns are more recent and therefore

less developed. However, with traditional biometric methods, it

is relatively easy for another person to obtain unauthorized

biometric data, since they achieve authentication by utilizing

information from the external body.

Vein biometrics, which utilize the network of blood vessels

underneath a person’s skin, are proven to be unique to each

finger and each individual, and are stable over a long period of

time [6]. Since veins are hidden underneath the skin surface

and are mostly invisible to human eye, they are not susceptible

to external distortions and are extremely difficult for an

intruder to acquire or duplicate the vein patterns as compared to

other biometric traits. Besides, as vein biometrics involve

sensing the flow of blood in the vessels, “aliveness” detection

is inherent, thus ensuring that only live finger veins are capable

of generating the biometric templates. Due to the uniqueness,

stability, and high resistance to criminal tampering, vein

patterns offer a more secure and reliable trait for a biometric

authentication system.

There is now a demand for biometric technology to be

deployed in low-cost embedded devices for portability and

mobility. Implementations of biometric authentication systems

in embedded hardware can also address the critical biometric

information leakage issue [7]. This is because an embedded

system can be designed effectively to provide a medium of

secure communication, secure information storage, and tamper

resistance against both physical and software attacks. However,

embedded systems, which are typically constrained in

resources and performance, hence the design of biometric

systems in such embedded environments is challenging and

therefore less developed, especially with vein biometrics [8].

In this paper, an infrared finger vein biometric verification

system is developed targeted for an implementation in FPGA-

based SoC platform. Our focus is to obtain an embedded

system based on the SoC that achieves high performance and

optimum matching accuracy. The system is prototyped on

Altera Nios2 FPGA Stratix II EP2S180 development board

running on Nios2-Linux RTOS with a 100MHz clock

frequency. The rest of the paper is organized as follows.

Section II presents the general description of the proposed

finger vein biometric system, and section III provides the

details of hardware acceleration of the image preprocessing

tasks. Experimental results are given in section IV, and

conclusions are made in section V.

2. Description & System Architecture

Fig. 1 shows the top-level conceptual design of the proposed

finger vein biometric system. In this current version of the

prototype, the vein pattern is captured by using a low-cost

modified IR webcam connected to a PC. As human veins are

hidden underneath skin, vein patterns cannot be observed in

visible light. However, vein patterns can be acquired by the fact

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

151

Nios2 Embedded CPU

IO peripherals & USB

on-board Flash Memory

(Biometric database)

on-board SDRAM Memory

(Nios2-Linux OS)

Image Preprocessing

Hardware Core

Template Matching

Software Module

Feature Extraction

Software Module

on-chip Image Buffer &

Memory control Module

!

!

S
y
s
te

m
 B

u
s

FPGA-based SoC

Fig. 3. System Architecture of Proposed Biometric System

that the infrared light (IR) with wavelength 700nm-1000nm can

pass through human tissues and the haemoglobin in the blood

can absorb infrared light fully [9]. In this paper, the NIR

imaging technique, rather than far-infrared (FIR), is applied

since it is more suitable for our purposes here, according to the

study in [10]. A light transmission method as illustrated in Fig.

2 is used in which, the finger is placed in between an array of

infrared light-emitting diode (IR LED) and a low cost image

acquisition module using a modified webcam with an attached

IR filter. In the resulting image, the vein patterns capture

appear darker. Image captured is 320x240 pixels (width x

height) in size, with 3 bytes per pixel. The raw finger vein

image, which is in coloured bmp format is first converted to

grayscale image, to reduce the size from 3 bytes to 1 byte per

pixel and for easier image manipulation.

Fig. 2. Finger vein NIR imaging technique

The captured image is then transfered to an FPGA-based

SoC platform for biometric processing, which involves the

process flow of image preprocessing, feature extraction and

template matching. As shown in Fig. 1, in the enrollment stage

of the process, users register their biometric data with the

system. The biometric templates are stored locally in the

template database in the on-board flash memory, thus providing

strong security. In the verification stage, users present their

biometric traits as well as the information of the claimed

identity to the system. A feature set is then extracted from the

query biometric input, and the system performs one-to-one

comparison of this feature set with the claimed database

template. Based on the result of this comparison, the system

classifies the user as either a genuine user or as an imposter.

The software-based feature extraction module utilizes the

minutiae-based features extracted from the vein patterns for

recognition as proposed in [11]. In this work, the minutiae

points chosen include bifurcation points and ridge ending

points. The most widely used method for minutiae feature

extraction is the Cross Number (CN) concept [12-13]. CN is

defined as number of transition from 0 to 1 (and vice versa) for

a pixel P0 to the surrounding pixels, P1 to P8 in a 3*3 window.

The biometric template is generated by storing the minutaie

type as well as the x and y coordinates of the minutiae point.

Table 1 shows the correspondence of the cross numbers to the

minutaie types.

Table 1. CN and Minutiae types

CN Minutaie type

0, 1 Isolated point

2, 3 Ridge ending point

4, 5 Connecting point

6, 7 Bifurcation point

8 Crossing point

In this paper, template matching applies the Hausdorff

Distance (HD) [14] to measure the dissimilarity of two images.

Given two sets of points A= {a1, … , am} and B= {b1, … , bn},

the Hausdorff Distance is defined as:

)),(),,(max(),(ABhBAhBAH ! , h(A, B) = !a-b! (1)

 where a is max element in A, b is min element in B.

h(A,B) is called the directed Hausdorff Distance from A to B. It

measures the distance from point in set A to its nearest

neighbor in set B, and identifies the point that is farthest from

any point of B. Thus, the Hausdorff Distance H(A,B) measures

the degree of mismatch between two sets of points as it reflects

the distance of A that is farthest from any point of B and vice

versa. A smaller value of H(A,B) would indicate a better

similarity of the two sets. The directed Hausdorff Distance

based on the work in [9] is very sensitive to outlier points. The

Modified Hausdorff Distance (MHD) introduced in [15]

overcomes this problem. In MHD, the directed Hausdorff

Distance is defined as:

 " # #
$!

Aa Bb
ba

m
BAh min

1
),((2)

By taking the average value of all distances from a point in A

to its nearest neighbour in B, rather than taking the farthest

point as defined in [9], MHD decreases the impact of outlier

point in the set.

Fig. 3 shows the system architecture of the proposed system

in a FPGA-based SoC platform. We have applied the hardware-

software partitioning that leads to an effective cost-speed

tradeoff. Speed performance is achieved by the application of

hardware-software co-design methodology, using hardware

acceleration for the compute-intensive image preprocessing

tasks and image buffer management while leaving feature

extraction and template matching processes to software. The

on-board SDRAM and flash memory units will contain the

Nios2-Linux RTOS and the template database respectively.

3. Image Preprocessing Accelerator Engine

As mentioned earlier, the image preprocessing tasks and

image buffer control and address generation are performed in a

dedicated hardware accelerator engine (HW core). As shown in

Fig. 4, the image preprocessing tasks include grayscale median

filter, ROI (region-of-interest) extraction, image alignment and

resizing, Gaussian low pass filter, image thresholding, binary

median filter and thinning.

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

152

The image buffer is a shared memory implemented as an 18

bit address RAM which can contain up to 2^18=262,144

location of image pixels. The first half of the memory is

reserved for input pixels, while the second half stores the

output pixels. The image processing modules can take any size

of image with the condition the image size (width x height)

does not exceed (2^18)/2=131,072.

Fig. 6. Control Flowchart of Pixel address hardware

Fig. 7. Storing image pixels in RAM

 (example of 320x240 image size)

The 8-bit width size of the RAM is designed to operate with

any grayscale image (8 bit per pixel) or binary image (1 bit per

pixel). The pixels are loaded into the RAM according control

flowchart shown in Fig. 6. Fig. 7 depicts how the pixels are

stored in the RAM for a sample 320x240 image size. The

looping path, x then by y, is followed when writing the image

pixels value to the RAM. After the image is processed, the

output data is stored, starting at the next address location after

the last address of the input image. Therefore, the relationship

between the (x,y) coordinates and the RAM addresses is as

illustrated in Fig. 8.

Fig. 8. Pixel coordinate (x,y) relation to RAM address

Let us now look into the design of the image prepocessing

modules. But, due to the lack of space in this paper, only the

Grayscale Median filter, ROI Extraction with Canny algorithm,

Gaussian Low Pass Filter and Binary Median filter are

presented.

Grayscale Median Filter— This filter is employed to remove

background noise in the captured vein image whilst preserving

the edges. The algorithm applied is based on the odd-even

mergesort sorting. A 7x7 pipelined median filter hardware is

designed based on the work in [16]. Fig. 9 shows an example of

the median filter network for 13 elements, where the horizontal

lines represent the inputs, a vertical arrow represents a

comparator with the arrow pointing towards the larger value of

its two inputs. The proposed median filter network for a 7x7

processing window requires a total of 342 comparators.

Fig. 9. Example of Median filter network for 13 elements

ROI Extraction with Canny edge detection algorithm—
This involves extracting the finger region by applying Canny

edge detection algorithm, edge smoothing with morphological

dilation, and finger region filling. The Canny edge detection

algorithm is as follows: (1) Image smoothing is performed,

applying grayscale median filter to remove noise so as to be

mistaken for an edge, (2) a 2-D first derivative of the Gaussian

operator is convolved with the smoothed image to obtain the dx

(horizontal gradient) and dy (vertical gradient), (3) The edge

strength G (gradient magnitude) and direction ! (gradient phase)

is then determined from the dx and dy, (4) a non-maxima

suppression process is then performed, which eliminates the

pixels that have no local maximum G, and (5) hysteresis

thresholding is applied to which edges are significant,

classifying them into strong edges and weak edges. Edge

Address

Generator

Image
Border

Checking

Image

Buffer

(RAM)

Window
Pixel Buffer
(registers)

Image Buffering Unit

Grayscale Median Filter

Thinning

Binary Median Filter

Thresholding

Gaussion LPF

Alignment & Resizing

ROI Extraction

HW Core

Image Preprocessing Modules

Fig. 5. Functional Block Diagram of Image Preprocessing

HW

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

153

tracking is then performed to find the weak edges which are

connected to strong edges and classified them as strong edges,

resulting in removing any broken edges.

The 2-D convolution is described by the equation (3),

where O(x,y) is the output of the convolution, I(x,y) is the

original image, f(x,y) is the convolution kernel, and M is the

size of convolution kernel in both dimensions:

),(*),(),(yxfyxIyxO !

" "
$! $!

$$!
2/

2/

2/

2/

),().,(

M

Mi

M

Mj

jyixfjiI (3)

The first derivative of Gaussian convolution filter f(x,y) is:

)exp()(
22 %%

xx
xf $$! (4)

For sigma, "=1.0, we will get the following convolution kernel

for both horizontal and vertical convolution,

dGxf = (f dGy)

T

 = [0.0133 0.1080 0.2420 0 -0.2420 -0.1080 -0.133] (5)

Converting these floating point values in equation (5) to

integers with a multiply mask of 10000, we obtain dx and dy as

follows:

 dx = I(x, y-3) x (-133) + I(x, y-2) x (-1080) + (6)

 dy = I(x-3, y) x (-133) + I(x-2, y) x (-1080) +

Implementing multiplication in hardware is slow and consumes

more logic, hence in this work, we simplify the multiplication

by using shift left and add operators. For example, since 133 =

128+4+1=27+22+1, multiplication by 133 can be written as

(in<<7) + (in<<2) + in, where in is the input we wish to

multiply by 133. The gradient magnitude, G, and phase are

determined by:

22
yx ddG &! and ! = arctan (dy/dx) (7)

G is simplified by using only shift and add operations, by

applying G = "(a2 + b2) = max {7x/8 + y/2, x } where x =

max{|a|, |b|} and y = min{|a|, |b|}. The gradient direction is

quantizing into four discrete directions, Discrete Angle. Table 2

shows the values assigned during quantization:

Table 2. Value assigned for gradient direction quantization

Gradient Direction (!) Discrete Angle

0 # $ < 45 or 180 # $ < 225 1

45 # $ < 90 or 225 # $ < 270 2
90 # $ < 135 or 270 # $ < 315 3

135 # $ < 180 or 315 # $ < 360 4

Since we have to multiply the Gaussian mask when finding the

dx and dy, any value using these parameters should be divided

by 10000. The square root in Equation (7) is removed since the

gradient magnitude is only use for comparison. The division

with 10000 can be simplified by using shift and add operation.

10000 can be approximate as:

 13421/134217728=(213+212+210+26+25+23+22+1)/227.

Fig. 10 shows the hardware module divideBy10000.

Fig. 10. Hardware module divideBy10000

The gradient magnitude G for all the 9 pixels in a 3x3 window

can be determined using the hardware design given in Fig. 11.

Fig. 11. Computing G for pixels in a 3x3 window

Gaussian Low Pass Filter— A spatial low pass filter with the

selected convolution mask given in Fig. 12 is applied to the

image to smooth out the sharp transitions in gray level and

remove high frequency noise in the image. The convolution of

the input image with the convolution mask is performed as

shown in Fig. 13. The operation is applied to each pixel in the

image. Z is the input image pixel, and W is the selected

convolution mask.

Fig. 12. Convolution mask

Fig. 13. Convolution of input image with the convolution

mask

Suppose Z12 is the pixel we wish to perform the convolution, so

Z0 to Z24 are the surrounding pixels. The corresponding

equation is shown in (8), and the matrix operation is given in

Z0 Z1 Z2 Z3 Z4 W0 W1 W2 W3 W4

Z5 Z6 Z7 Z8 Z9 W5 W6 W7 W8 W9

Z10 Z11 Z12 Z13 Z14 * W10 W11 W12 W13 W14

Z15 Z16 Z17 Z18 Z19 W15 W16 W17 W18 W19

Z20 Z21 Z22 Z23 Z24 W20 W21 W22 W23 W24

1 4 7 4 1

1/273
 4 16 26 16 4

x 7 26 41 26 7

4 16 26 16 4

1 4 7 4 1

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

154

The operation results in the final pixel being the weighted sum

of the neighboring pixels

" !

'!
24

0
12 i ii ZWZ

 (8)

Binary Median Filter— This filter functions to eliminate

noise after thresholding stage. Since we are operating on a

binary image, which consists only pixels of values ‘0’ or ‘255’,

we can replace the sorting algorithm by using a simple count

operation. The window size used in our system is 5x5 with

iteration of 3. First, the algorithm will look at all pixels in the

w*w size window, and count up one if the value is equal to ‘0’.

If the total count value us greater than (
)

*
+
,

- $'

2

1ww
, then the

output is assign as ‘0’ or else is assign as ‘255’. By doing so,

the median filter for binary image is actually replacing the

center pixel by the dominant pixel value in a w*w window. As

a result, by using this counter-based design, the the median

filtering process has been significantly speeded up by 80%

compared to conventional method.

4. Experimental Results

Fig. 14 illustrates the output image of each module in the

image preprocessing HW core. The figures show clearly the

vein pattern extracted. Fig. 15 illustrates minutaie template

extracted from a sample finger vein pattern.

Experimental work is performed on a database consisting

of 100 finger vein images from 20 different fingers (5 samples

for each finger).

Fig. 16 illustrates the distribution of the client and imposter

access attempts against the MHD matching scores. It can be

observed from the plot that the matching score distribution

discriminates well between clients and imposters. We use

different threshold values for different users in the database.

The experiment on this database gives us an Equal Error Rate

(EER) of 0.08% average. The matching accuracy achieved is

encouraging and, the system can achieve higher accuracy by

adding noise removal after the binary median filter or the

thinning process. However, this would burden system resources

already limited by the capabilities of the 50MHz fixed-point

embedded processor.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
2

4

6

8

10

12

14

16

18

20

22
Distribution of Client & Imposter Matching Score

Access Attempts

M
H

D
 S

c
o

re

Client

Imposter

Fig. 16. Distribution of client and imposter MHD

matching score of the proposed

Fig. 14. Output image of each module in Image Preprocessing

Fig. 15. Extracted Minutaie Template of Sample Finger Vein

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

155

The SoC is prototyped on an Altera Nios2 FPGA

development board running the Nios2-Linux OS at 50MHz

clock. Table 3 gives the speed performance (execution times)

of the image preprocessing modules for the embedded SW

execution (on Nios2 CPU) and the corresponding HW

execution in the HW Core. The hardware accelerator core

achieve an average of 27 speed gain over the firmware version.

Table 4 gives the system performances, showing that the

biometric verification process in the SoC-based implementation

is about 20 times (=24.23/1.27) faster than the software-based

equivalent. This performance can further be improved if the

image preprocessing accelerator core employs pipelining and

other high performance architectures in its design, and feature

extraction is also performed in hardware.

5. Conclusion

Based on the results, it can be concluded that a finger vein

authentication system targeted for embedded system, which is

implemented on Altera Nios II FPGA prototyping board,

running on RTOS Nios2-Linux has been successfully

developed. The experimental results have shown the

performance bottlenecks, and opportunities for optimizing the

system have been identified. The proposed finger vein

biometric system achieves a matching accuracy of EER

(average) of 0.08% and a verification processing time of 1.27

seconds, demonstrating that the design approach taken can be

effective for embedded vein biometric authentication system.

Acknowledgement

This work is supported by the Ministry of Higher Education

Malaysia (MoHE) and Universiti Teknologi Malaysia (UTM)

under University Grant Vote No. Q.J130000.7123. 02H39.

References

[1] U. Uludag, S. Pankanti, S. Prabhakar, and A. K. Jain,

"Biometric cryptosystems: issues and challenges," Proc. of

the IEEE, vol. 92, pp. 948-960, 2004.

[2] T. Matthew and P. Alex, "Eigenfaces for recognition," J.

of Cognitive Neuroscience, Vol. 3, pp. 71-86, 1991.

[3] A. K. Jain, H. Lin, and R. Bolle, "On-line fingerprint

verification," IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 19, pp. 302-314, 1997.

[4] S. Lim, K. Lee, O. Byeon and T. Kim. "Efficient iris

recognition through improvement of feature vector and

classifier", Electronics and Telecommunications Research

Institute Journal, vol. 23, no. 2, pp. 61-70, 2001.

[5] A. M. Judith, "Voice biometrics," Communications of the

ACM, vol. 43, pp. 66-73, 2000.

[6] Y. H. Ding, D. Y. Zhuang, and K. J. Wang, "A study of

hand vein recognition method," in IEEE Int. Conference

on Mechatronics and Automation, pp. 2106-2110, 2005.

[7] S. L. Yang, K. Sakiyama, and I. M. Verbauwhede, "A

compact and efficient fingerprint verification system for

secure embedded devices," in Asilomar Conference on

Signals, Systems and Computers, pp. 2058-2062, 2003.

[8] N.Aaraj et.al, "Architectures for efficient face authen-

tication in embedded systems," in Proceedings Design,

Automation and Test in Europe, pp.6, 2006.

[9] D. Mulyono and H. S. Jinn, "A study of finger vein

biometric for personal identification," in Int. Symposium

on Biometrics and Security Technologies, pp. 1-8, 2008.

[10] L. Y. Wang and G. Leedham, "Near- and Far- Infrared

Imaging for Vein Pattern Biometrics," in IEEE Int Conf

on Video and Signal Based Surveillance, pp. 52-52, 2006.

[11] L. Y. Wang, G. Leedham, and D. S. Y. Cho, "Minutiae

feature analysis for infrared hand vein pattern biometrics,"

Pattern Recognition, vol. 41, pp. 920-929, 2008.

[12] R. Thai, “Fingerprint image enhancement and minutiae

extraction”, School of Computer Science and Software

Engineering, the University of Western Australia, 2009.

[13] X. Sun and Z.M. Ai, “Automatic feature extraction and

recognition of fingerprint images”, Proc of ICSP’, 1996.

[14] O.Jesorsky et.al, “Robust face detection using Hausdorff

Distance”, Lecture Notes In Computer Science, Springer-

Verlag , Vol. 2091, Halmstad, Sweden, pp.90-95, 2001.

[15] M.P. Dubuisson & A.K Jain, “A modified Hausdorff

distance for object matching”, Proc. IAPR Int. Conf. on

Pattern Recognition, vol.1, Jerusalem, pp.566-568,

October, 1994.

[16] K.L. Chung, “A fast Pipelined Median Filter Network”,

Signal Processing, 51(2), pp.133-136, 1996.

Table 4. Performance – SoC against SW-based Implementation*

 Process
Processing Time (sec)

SW-based SoC-based

Image Preprocessing 24.02 0.91

Feature Extraction &

Template Matching (SW)

0.21 0.21

IO data transfer - 0.15

Total: 24.23 1.27

*SoC Implementation: Nios2 cpu + Image Preproc. HW Core

SW-based Implementation: Embedded Software on Nios2 cpu

Table 3. Execution Times of each module

in Image Preprocessing core, running at 50MHz

Image Preprocessing

Modules

Execution Time

(sec) Speed

Gain

(A/B)
SW in

Nios2

(A)

HW

accelerator

(B)

Grayscale Median filter (7x7) 9.43 0.02 470

ROI extraction 7.01 0.39 18

Image alignment & resizing 0.95 0.01 95

Gaussian low pass filter (5x5) 1.04 0.01 104

Local Thresholding (19x19) 1.59 0.03 53

Binary Median filter (5x5, 3) 1.47 0.04 37

Thinning 2.53 0.41 6.2

Total: 24.02 0.91 27

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

156

