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Abstract— As security and privacy protection have become 

important today, biometric-based personal verification has 

also increasingly gain popularity. However, biometric 

technology applies complex, compute-intensive image 

processing algorithms which demand to be executed on 

powerful computers for acceptable processing times. This 

prevents biometric systems to be used in applications that 

require low-cost embedded solutions. This paper presents a 

novel approach to personal verification that utilizes 

infrared finger vein biometrics implemented in an FPGA-

based System-on-Chip platform. To improve performance, 

we apply the hardware-software co-design approach, using 

hardware acceleration for the image preprocessing tasks 

and image buffer management while leaving feature 

extraction and template matching to software. The system 

is prototyped on an Altera Nios2 FPGA development board 

running the Nios2-Linux RTOS at 100MHz clock. The 

proposed  finger vein biometric system achieves a matching 

accuracy of EER (average) of 0.08% and a verification 

processing time of 1.27 seconds, demonstrating that the 

design approach taken can be effective for embedded vein 

biometric authentication system.  

1. Introduction 

Personal verification systems based on biometrics are more 

reliable than the password-based systems, since biometric 

characteristics cannot be lost or forgotten. Also, biometric 

features are difficult to replicate, and the user is required to be 

present for the authentication process [1]. While biometric 

traits such as face, fingerprint, iris and voice [2-5] have been 

well studied, and are considered as the traditional ones, 

biometrics utilizing vein patterns are more recent and therefore 

less developed. However, with traditional biometric methods, it 

is relatively easy for another person to obtain unauthorized 

biometric data, since they achieve authentication by utilizing 

information from the external body. 

Vein biometrics, which utilize the network of blood vessels 

underneath a person’s skin,  are proven to be unique to each 

finger and each individual, and are stable over a long period of 

time [6]. Since veins are hidden underneath the skin surface 

and are mostly invisible to human eye, they are not susceptible 

to external distortions and are extremely difficult for an 

intruder to acquire or duplicate the vein patterns as compared to 

other biometric traits. Besides, as vein biometrics involve 

sensing the flow of blood in the vessels, “aliveness” detection 

is inherent, thus ensuring that only live finger veins are capable 

of generating the biometric templates. Due to the uniqueness, 

stability, and high resistance to criminal tampering, vein 

patterns offer a more secure and reliable trait for a biometric 

authentication system. 

There is now a demand for biometric technology to be 

deployed in low-cost embedded devices for portability and 

mobility. Implementations of biometric authentication systems 

in embedded hardware can also address the critical biometric 

information leakage issue [7]. This is because an embedded 

system can be designed effectively to provide a medium of 

secure communication, secure information storage, and tamper 

resistance against both physical and software attacks. However, 

embedded systems, which are typically constrained in 

resources and performance, hence the design of biometric 

systems in such embedded environments is challenging and 

therefore less developed, especially with vein biometrics [8].  

In this paper, an infrared finger vein biometric verification 

system is developed targeted for an implementation in FPGA-

based SoC platform. Our focus is to obtain an embedded 

system based on the SoC that achieves high performance and 

optimum matching accuracy. The system is prototyped on 

Altera Nios2 FPGA Stratix II EP2S180 development board 

running on Nios2-Linux RTOS with a 100MHz clock 

frequency. The rest of the paper is organized as follows. 

Section II presents the general description of the proposed 

finger vein biometric system, and section III provides the 

details of hardware acceleration of the image preprocessing 

tasks. Experimental results are given in section IV, and 

conclusions are made in section V. 

2. Description & System Architecture 

Fig. 1 shows the top-level conceptual design of the proposed 

finger vein biometric system. In this current version of the 

prototype, the vein pattern is captured by using a low-cost 

modified IR webcam connected to a PC. As human veins are 

hidden underneath skin, vein patterns cannot be observed in 

visible light. However, vein patterns can be acquired by the fact 
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Fig. 3.  System Architecture of Proposed Biometric System 

that the infrared light (IR) with wavelength 700nm-1000nm can 

pass through human tissues and the haemoglobin in the blood 

can absorb infrared light fully [9]. In this paper, the NIR 

imaging technique, rather than far-infrared (FIR), is applied 

since it is more suitable for our purposes here, according to the 

study in [10]. A light transmission method as illustrated in Fig. 

2 is used in which, the finger is placed in between an array of 

infrared light-emitting diode (IR LED) and a low cost image 

acquisition module using a modified webcam with an attached 

IR filter. In the resulting image, the vein patterns capture 

appear darker. Image captured is 320x240 pixels (width x 

height) in size, with 3 bytes per pixel. The raw finger vein 

image, which is in coloured bmp format is first converted to 

grayscale image, to reduce the size from 3 bytes to 1 byte per 

pixel and for easier image manipulation.

Fig. 2.  Finger vein NIR imaging technique  

The captured image is then transfered to an FPGA-based 

SoC platform for biometric processing, which involves the 

process flow of image preprocessing, feature extraction and 

template matching. As shown in Fig. 1, in the enrollment stage 

of the process, users register their biometric data with the 

system. The biometric templates are stored locally in the 

template database in the on-board flash memory, thus providing 

strong security. In the verification stage, users present their 

biometric traits as well as the information of the claimed 

identity to the system. A feature set is then extracted from the 

query biometric input, and the system performs one-to-one 

comparison of this feature set with the claimed database 

template. Based on the result of this comparison, the system 

classifies the user as either a genuine user or as an imposter. 

The software-based feature extraction module utilizes the 

minutiae-based features extracted from the vein patterns for 

recognition as proposed in [11]. In this work, the minutiae 

points chosen include bifurcation points and ridge ending 

points. The most widely used method for minutiae feature 

extraction is the Cross Number (CN) concept [12-13]. CN is 

defined as number of transition from 0 to 1 (and vice versa) for 

a pixel P0 to the surrounding pixels, P1 to P8 in a 3*3 window. 

The biometric template is generated by storing the minutaie 

type as well as the x and y coordinates of the minutiae point. 

Table 1 shows the correspondence of the cross numbers to the 

minutaie types. 

Table 1. CN and Minutiae types 

CN Minutaie type 

0, 1 Isolated point 

2, 3 Ridge ending point 

4, 5 Connecting point 

6, 7 Bifurcation point 

8 Crossing point 

In this paper, template matching applies the Hausdorff 

Distance (HD) [14] to measure the dissimilarity of two images. 

Given two sets of points A= {a1, … , am} and B= {b1, … , bn},

the Hausdorff Distance is defined as:  

    )),(),,(max(),( ABhBAhBAH !  , h(A, B) = !a-b!   (1) 

     where a is max element in A, b is min element in B. 

h(A,B) is called the directed Hausdorff Distance from A to B. It 

measures the distance from point in set A to its nearest 

neighbor in set B, and identifies the point that is farthest from 

any point of B. Thus, the Hausdorff Distance H(A,B) measures 

the degree of mismatch between two sets of points as it reflects 

the distance of A that is farthest from any point of B and vice 

versa. A smaller value of H(A,B) would indicate a better 

similarity of  the two sets. The directed Hausdorff Distance 

based on the work in [9] is very sensitive to outlier points. The 

Modified Hausdorff Distance (MHD) introduced in [15] 

overcomes this problem. In MHD, the directed Hausdorff 

Distance is defined as: 

     " # #
$!

Aa Bb
ba

m
BAh min

1
),(    (2) 

By taking the average value of all distances from a point in A 

to its nearest neighbour in B, rather than taking the farthest 

point as defined in [9], MHD decreases the impact of outlier 

point in the set. 

Fig. 3 shows the system architecture of the proposed system 

in a FPGA-based SoC platform. We have applied the hardware-

software partitioning that leads to an effective cost-speed 

tradeoff. Speed performance is achieved by the application of 

hardware-software co-design methodology, using hardware 

acceleration for the compute-intensive image preprocessing 

tasks and image buffer management while leaving feature 

extraction and template matching processes to software. The 

on-board SDRAM and flash memory units will contain the 

Nios2-Linux RTOS and the template database respectively. 

3. Image Preprocessing Accelerator Engine 

As mentioned earlier, the image preprocessing tasks and 

image buffer control and address generation are performed in a 

dedicated hardware accelerator engine (HW core). As shown in 

Fig. 4, the image preprocessing tasks include grayscale median 

filter, ROI (region-of-interest) extraction, image alignment and 

resizing, Gaussian low pass filter, image thresholding, binary 

median filter and thinning.  
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The image buffer is a shared memory implemented as an 18 

bit address RAM which can contain up to 2^18=262,144 

location of image pixels. The first half of the memory is 

reserved for input pixels, while the second half stores the 

output pixels. The image processing modules can take any size 

of image with the condition the image size (width x height) 

does not exceed (2^18)/2=131,072.  

Fig. 6. Control Flowchart of Pixel address hardware 

Fig. 7.  Storing image pixels in RAM 

 (example of 320x240 image size) 

The 8-bit width size of the RAM is designed to operate with 

any grayscale image (8 bit per pixel) or binary image (1 bit per 

pixel). The pixels are loaded into the RAM according control 

flowchart shown in Fig. 6. Fig. 7 depicts how the pixels are 

stored in the RAM for a sample 320x240 image size. The 

looping path, x then by y, is followed when writing the image 

pixels value to the RAM. After the image is processed, the 

output data is stored, starting at the next address location after 

the last address of the input image. Therefore, the relationship 

between the (x,y) coordinates and the RAM addresses is as 

illustrated in Fig. 8.  

Fig. 8. Pixel coordinate (x,y) relation to RAM address 

Let us now look into the design of the image prepocessing 

modules. But, due to the lack of space in this paper, only the 

Grayscale Median filter, ROI Extraction with Canny algorithm, 

Gaussian Low Pass Filter and Binary Median filter are 

presented. 

Grayscale Median Filter— This filter is employed to remove 

background noise in the captured vein image whilst preserving 

the edges. The algorithm applied is based on the odd-even 

mergesort sorting. A 7x7 pipelined median filter hardware is 

designed based on the work in [16]. Fig. 9 shows an example of 

the median filter network for 13 elements, where the horizontal 

lines represent the inputs, a vertical arrow represents a 

comparator with the arrow pointing towards the larger value of 

its two inputs.  The proposed median filter network for a 7x7 

processing window requires a total of 342 comparators. 

Fig. 9.  Example of Median filter network for 13 elements 

ROI Extraction with Canny edge detection algorithm—
This involves extracting the finger region by applying Canny 

edge detection algorithm, edge smoothing with morphological 

dilation, and finger region filling. The Canny edge detection 

algorithm is as follows:  (1) Image smoothing is performed, 

applying grayscale median filter to remove noise so as to be 

mistaken for an edge, (2) a 2-D first derivative of the Gaussian 

operator is convolved with the smoothed image to obtain the dx

(horizontal gradient) and dy (vertical gradient), (3) The edge 

strength G (gradient magnitude) and direction ! (gradient phase) 

is then determined from the dx and dy, (4) a non-maxima 

suppression process is then performed, which eliminates the 

pixels that have no local maximum G, and (5) hysteresis 

thresholding is applied to which edges are significant, 

classifying them into strong edges and weak edges. Edge 
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tracking is then performed to find the weak edges which are 

connected to strong edges and classified them as strong edges, 

resulting in removing any broken edges.

The 2-D convolution is described by the equation (3), 

where O(x,y) is the output of the convolution, I(x,y) is the 

original image, f(x,y) is the convolution kernel, and M is the 

size of convolution kernel in both dimensions: 

),(*),(),( yxfyxIyxO !

" "
$! $!

$$!
2/

2/

2/

2/

),().,(

M

Mi

M

Mj

jyixfjiI   (3) 

The first derivative of Gaussian convolution filter f(x,y) is:  

)exp()(
22 %%

xx
xf $$!    (4) 

For sigma, "=1.0, we will get the following convolution kernel 

for both horizontal and vertical convolution,  

    
dGxf =  ( f dGy )

T

           =  [ 0.0133 0.1080 0.2420  0 -0.2420 -0.1080 -0.133]  (5) 

Converting these floating point values in equation (5) to 

integers with a multiply mask of 10000, we obtain dx and dy as 

follows:

   dx = I(x, y-3) x (-133) +  I(x, y-2) x (-1080) + ..... (6)

   dy = I(x-3, y) x (-133) +  I(x-2, y) x (-1080) + .....

Implementing multiplication in hardware is slow and consumes 

more logic, hence in this work, we simplify the multiplication 

by using shift left and add operators. For example, since 133 = 

128+4+1=27+22+1, multiplication by 133 can be written as 

(in<<7) + (in<<2) + in, where in is the input we wish to 

multiply by 133. The gradient magnitude, G, and phase are 

determined by: 

22
yx ddG &!   and    ! = arctan (dy/dx) (7)  

G is simplified by using only shift and add operations, by 

applying G = "(a2 + b2) = max {7x/8 + y/2, x } where x = 

max{|a|, |b|} and y = min{|a|, |b|}. The gradient direction is 

quantizing into four discrete directions, Discrete Angle. Table 2 

shows the values assigned during quantization: 

Table 2. Value assigned for gradient direction quantization 

Gradient Direction (!) Discrete Angle 

0 # $ < 45 or 180 # $ < 225 1 

45 # $ < 90 or 225 # $ < 270 2 
90 # $ < 135 or 270 # $ < 315 3 

135 # $ < 180 or 315 # $ < 360 4 

Since we have to multiply the Gaussian mask when finding the 

dx and dy, any value using these parameters should be divided 

by 10000. The square root in Equation (7) is removed since the 

gradient magnitude is only use for comparison. The division 

with 10000 can be simplified by using shift and add operation. 

10000 can be approximate as: 

    13421/134217728=(213+212+210+26+25+23+22+1)/227.

Fig.  10 shows the hardware module divideBy10000.

Fig. 10. Hardware module divideBy10000 

The gradient magnitude G for all the 9 pixels in a 3x3 window 

can be determined using the hardware design given in Fig. 11.  

Fig. 11. Computing G for pixels in a 3x3 window 

 

Gaussian Low Pass Filter— A spatial low pass filter with the 

selected convolution mask given in Fig. 12 is applied to the 

image to smooth out the sharp transitions in gray level and 

remove high frequency noise in the image. The convolution of 

the input image with the convolution mask is performed as 

shown in Fig. 13. The operation is applied to each pixel in the 

image. Z is the input image pixel, and W is the selected 

convolution mask. 

Fig. 12.  Convolution mask 

Fig. 13.  Convolution of input image with the convolution 

mask 

Suppose Z12 is the pixel we wish to perform the convolution, so 

Z0 to Z24 are the surrounding pixels. The corresponding 

equation is shown in (8), and the matrix operation is given in 

Z0 Z1 Z2 Z3 Z4 W0 W1 W2 W3 W4

Z5 Z6 Z7 Z8 Z9 W5 W6 W7 W8 W9

Z10 Z11 Z12 Z13 Z14 * W10 W11 W12 W13 W14

Z15 Z16 Z17 Z18 Z19 W15 W16 W17 W18 W19

Z20 Z21 Z22 Z23 Z24 W20 W21 W22 W23 W24

1 4 7 4 1 

1/273 
 4 16 26 16 4 

x 7 26 41 26 7 

4 16 26 16 4 

1 4 7 4 1
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The operation results in the final pixel being the weighted sum 

of the neighboring pixels 

     
" !

'!
24

0
12 i ii ZWZ

  (8) 

Binary Median Filter— This filter functions to eliminate 

noise after thresholding stage. Since we are operating on a 

binary image, which consists only pixels of values ‘0’ or ‘255’, 

we can replace the sorting algorithm by using a simple count 

operation. The window size used in our system is 5x5 with 

iteration of 3. First, the algorithm will look at all pixels in the 

w*w size window, and count up one if the value is equal to ‘0’. 

If the total count value us greater than (
)

*
+
,

- $'

2

1ww
, then the 

output is assign as ‘0’ or else is assign as ‘255’. By doing so, 

the median filter for binary image is actually replacing the 

center pixel by the dominant pixel value in a w*w window. As 

a result, by using this counter-based design, the the median 

filtering process has been significantly speeded up by 80% 

compared to conventional method. 

4. Experimental Results 

Fig. 14 illustrates the output image of each module in the 

image preprocessing HW core. The figures show clearly the 

vein pattern extracted. Fig. 15 illustrates minutaie template 

extracted from a sample finger vein pattern. 

Experimental work is performed on a database consisting 

of 100 finger vein images from 20 different fingers (5 samples 

for each finger).  

Fig. 16 illustrates the distribution of the client and imposter 

access attempts against the MHD matching scores. It can be 

observed from the plot that the matching score distribution 

discriminates well between clients and imposters. We use 

different threshold values for different users in the database. 

The experiment on this database gives us an Equal Error Rate 

(EER) of 0.08% average. The matching accuracy achieved is 

encouraging and, the system can achieve higher accuracy by 

adding noise removal after the binary median filter or the 

thinning process. However, this would burden system resources 

already limited by the capabilities of the 50MHz fixed-point 

embedded processor. 
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Fig. 14.  Output image of each module in Image Preprocessing

Fig. 15. Extracted Minutaie Template of Sample Finger Vein
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The SoC is prototyped on an Altera Nios2 FPGA 

development board running the Nios2-Linux OS at 50MHz 

clock. Table 3 gives the speed performance (execution times) 

of the image preprocessing modules for the embedded SW 

execution (on Nios2 CPU) and the corresponding HW 

execution in the HW Core. The hardware accelerator core 

achieve an average of 27 speed gain over the firmware version. 

Table 4 gives the system performances, showing that the 

biometric verification process in the SoC-based implementation 

is about 20 times (=24.23/1.27) faster than the software-based 

equivalent. This performance can further be improved if the 

image preprocessing accelerator core employs pipelining and 

other high performance architectures in its design, and feature 

extraction is also performed in hardware.  

 

5. Conclusion 

Based on the results, it can be concluded that a finger vein 

authentication system targeted for embedded system, which is 

implemented on Altera Nios II FPGA prototyping board, 

running on RTOS Nios2-Linux has been successfully 

developed. The experimental results have shown the 

performance bottlenecks, and opportunities for optimizing the 

system have been identified. The proposed  finger vein 

biometric system achieves a matching accuracy of EER 

(average) of 0.08% and a verification processing time of 1.27 

seconds, demonstrating that the design approach taken can be 

effective for embedded vein biometric authentication system. 
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Table 4. Performance – SoC against SW-based Implementation* 

 Process 
Processing Time (sec) 

SW-based SoC-based 

   

Image Preprocessing 24.02 0.91 

Feature Extraction & 

Template Matching (SW) 

0.21 0.21 

IO data transfer  - 0.15 

Total: 24.23 1.27 

*SoC Implementation: Nios2 cpu + Image Preproc. HW Core 

SW-based Implementation: Embedded Software on Nios2 cpu 

Table 3. Execution Times of each module  

in Image Preprocessing core, running at 50MHz 

Image Preprocessing 

Modules 

Execution Time 

(sec) Speed  

Gain 

(A/B) 
SW in 

Nios2

(A)

HW

accelerator

(B) 

    

Grayscale Median filter (7x7) 9.43 0.02 470 

ROI extraction 7.01 0.39 18 

Image alignment & resizing 0.95 0.01 95 

Gaussian low pass filter (5x5) 1.04 0.01 104 

Local Thresholding (19x19) 1.59 0.03 53 

Binary Median filter (5x5, 3) 1.47 0.04 37 

Thinning 2.53 0.41 6.2 

Total: 24.02 0.91 27 
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