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Abstract

The cascade and parallel artificial neural networks
(ANN) structure were used to estimation the
concentration of volatile organic compounds An array
of piezoelectric quartz crystals were used to detect
volatile organic gases. Steady-state frequency shifts
have been used as the input patterns for ANN
structures. The network structures and network
performances were discussed.

1 Introduction

Toluene and other volatile organic vapours in ambient
air are known to be reactive photochemically, and can
have harmful effects upon long-term exposure at
moderate levels. These type organic compounds are
widely used as a solvent in a large number chemical
industry and in printing plants [1].

Developing and designing sensors for the specific
detection of hazardous components in the mixture of
many others is important [2].

In recent years a variety of selective coating
(adsorbates) has been investigated for chemical sensors.
The molecules to be detected (analytes) interact with
these adsorbates. They may be identified quantitatively
by changes of physical or chemical parameters of
adsorbate / analyte system such as the refractor index,
capacitance, conductivity, or total mass. The last can be
monitored by quartz crystal microbalance (QCM)
sensors, which are widely used as thickness monitors
[3.4).

However, the complete selectivity cannot be realised.
Therefore, a variety of different methods have been
developed to overcome this problem by using an array
of different sensors and evaluating the data in a
subsequent data processing step similar to the olfactory
system of humans with a few receptors and subsequent
data evaluation in the brain.

Artificial neural network (ANN) models or simply
"neural nets" go by many names such as connectionist
models, parallel distributed processing models, and
neuromorphic systems. Whatever the name, all these
models attempt to achieve good performance via dense
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interconnection of simple computational elements. In
this respect, artificial neural net structure is based on
our present understanding of biological nervous
systems [5,6].

For complex termary mixtures and long-term
measurements the artificial neural network offers
advantages in predictability [7].

2. Artificial Neural Net (ANN) Models

Instead of performing a program of instructions
sequentially, neural net models explore many
competing hypotheses simultaneously using massively
parallel nets composed of many computational
clements connected by links with variable weights .
Computational clements ore nodes used in nenral net
models are nonlinear, are typically analogue, and may
be slow compared to modern digital circuitry .

The net topology, node characteristics, and training or
learning rules specifies neural net models. These rules
specify an initial set of weights and indicate how
weights should be adapted during use to improve
performance. Both design procedures and training
rules are the topic of much current research [5,6].

The potential benefits of neural nets expend beyond
the high computation rates provided by massive
paralielism. Neural nets typically provide a greater
degree of robustness or fault tolerance than sequential
computations because there are many more processing
nodes, each with primarily local connections. Damage
to a few nodes or links thus need not impair overall
performance significantly. Most neural net algorithms
also adapt connection weights in time to improve
performance based on current result [5,6]

The artificial neuron was designed to imitate the first
order characteristics of the real biological neuron.
Essentially a set of inputs is applied, each representing
the output of another neuron. Each input is multiplied
by a corresponding weight analogous to a synaptic
strength, and all the weighted inputs are then summed
to determine the activation level of the neuron [7]
Figure 1 depicts a model that implements the above
functional description.
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Ynet=W1 X1+W2 X2 +........ +Wn Xn

Activation function used in this study is f(x) =
1/(1+exp(-x)). Thus

Yout=1/(1+exp(-Ynet ))

Figurel. Artificial neuron model

A multi-layer percepiron (MLP) neural networks
trained with the back propagation supervised learning
method was used to train and test the data obtained
both from the simulation and the real time system
performances. Back propagation learning involves
using an iterative gradient-descent algorithm to
minimise the mean square error between the actual
outputs of the network and the desired outputs in

response to given inputs [8].
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Figure2. A MLP Artificial neural network

The following steps are involved in constructing and

training an MLP network [8] :

1) Defining the structure of the network ( the number
of layers and neurons in each layer)

2) Selecting the learning parameters (learning rate
and momentum coefficient)

3) Initialising the connection weights

4) Selecting an input-output pair from the training
examples set and presenting it to the network

5) Calculating the output values of the neurons in
the hidden and output layers

6) Comparing the output values of network with the
desired output values and calculating the output
errors

7) Adijusting the connection weights of the network
with the decrease the output errors

8) Repeating step 4 to 7 until the error is acceptable
or a predefined number of iterations are
completed.

3. A Coated QCM Sensor Array

Chemical and biochemical semsors have a wide
spectrum of applications in the field of environmental
sensing. Since totally selective sensors based upon
key-lock interactions do not exist for the detection of
volatile organic vapours, the cross-sensitivities of
carefully chosen sensor elements can be exploited in a
sensor array by applying different algorithms of multi-
component analysis and pattern recognition. The
criteria for the choice of these sensor elements are a
certain selectivity, sufficient sensitivity and long-term
stability, which ensure reproducible results over a
period of months [9].

In order to meet these requirements we developed an
array of 4 QCM sensor devices with tetrakis alkaly
thin substituted metalphtalocyaninnes as a sensitive
layers.

The transducers employed were QCM  with
fundamental frequency of 10 MHz. The setup
consisted of two QCM for each sensor, one of them as
reference QCM. Each QCM was powered by an
oscillator circuit. A mixer circuit was used for
measuring the frequency shift of coated QCM

The frequency shift of a quartz crystal, Af, due to
deposition of some material (analyte molecules) on or
its removal from the crystal surface is [3.4].
Af=-CAm

where C is a constant determined by the vibrational
frequency, frequency constant of the crystal, density of
quartz, and effective area of vibrating plate. Am is
correlated with the gas-phase concentration of the
analyte and therefore the frequency shift as well. The
relative frequency shift data were used to perform the
multi-component analysis.

Frequency shift (Hz) vs. concentration (ppm)
characteristics were measured for toluene, benzene,
hexane, and acetone.
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Figure 3. Block diagram of frequency shift
measurement circuit

The test vapours were generated from cooled bubblers
using synthetic air as carrier gas and then diluted to
known concentrations by computer — driven mass flow
controllers. The humidity content was adjusted in the
same manner. All vapours were mixed and temperature
stabilised before entering the chamber. All sensor

responses were measured simultaneously in the same

gas atmosphere.

mﬁwﬁlﬂﬁ

_ Comerrteation (ppm)
2404 ¥ 10 A0 WO 0 IW0 QO

240 320 400 480 560 640 720 800 BEO 960 1040

Time (min.)

Figure 4.0 An example frequency shift (Hz) vs.

concentration (ppm) at room temperature for our
measurements

4. Method

In the first step we used three layer ANN. Figure 5.
shows the structure of this ANN. For hidden layer we
used 10, 13 and 15 hidden neuron to see the effect of
hidden neuron number. In the second step we used
cascade and parallel ANN structures.

Figure 5. Neural architecture used to relate the sensor
signal to the analyte concentrations

In the cascade ANN structure, the outputs of the first
ANN are learning inputs of second ANN. Figure 6.

shows the cascade ANN structure.
Feaquency Shifts
Conmntrtion
Sensor ! | — of Tol
) ANNI ANNZ 2

Figure 6. Cascade ANN structure

In the parallel ANN structure, range of measurement
is divided into three parts, as an example, we used the
following ranges:

ANNI for 0 <, < 10000 ppm
ANN2 for 1000 <, < 5000 ppm
ANN3 for 0 <, < 1000 ppm
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Figure 7. Parallel ANN structure

For the output we used a simple decision algorithm to
outputs of ANN1;
- If the detected concentrations are between 5000-
10000 ppm, then take output as ANN1’s output
- If the detected concentrations are between 1000-5000
ppm, then take output as ANN2’s output
- If ‘the detected concentrations are between 0-1000
ppm, then take output as ANN3’s output

In the cascade and parallel ANN structures, ANN’s
have three layers with 4 input, 4 output and 15 hidden
neurons. In the all ANN structures, learning coefficient
is 0.25 and momentum coefficient is 0.75.

For the performance measurement, we use the mean
relative absolute error E(RAE ) and the corresponding
maximum error max(RAE) [6] ;

————(P'“; - Pm) VP, =0

trwe

max(RAE) = max

S. Results and Discussions

The ability of ANN structures to estimation of the
concentrations was observed.

Once the ANN structures are trained successfully
and weights are determined, only forward propagation
is performed and consequently very simple and fast
discrimination can be achieved.

10

Figure 8. Error graphics of ANN with respect to # of
hidden neurones

As seen in the figure 8, E(RAE) decreased with
increasing hidden neuron number. So, for optimal
solutions, in the parallel and cascade structure we
used 15 neuron in the hidden layer.

It is shown that numbers of iteration in training
improves the learning (figure 9).

-4
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Figure 9. Effects of iterations

Table 1. Comparison of ANN results

E(RAE) MAX(RAE)

ANN 10.8 43

Cascade ANN’s 5.8 38

Paralle]l ANN’s 6.23 33

Table 1 showed that, all results have a good
performance for detection of gas concentrations and
Cascade and parallel ANN’s reduce the E(RAE) and
MAX(EAR). The performance of ANN’s is improved
by Cascade and Parallel structures.
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In the cascade ANN structure second ANN behaves as
a decision maker so improves the estimation results.

The parallel ANN structure takes advantage of the
fact that a neural-network group decision is more
accurate than decision of network [10}.

6. Conclusions

In this paper tree tape of neural network architecture
were discussed.

It has been found that this ANN structures are capable
both of discriminating reliably between various sorts of
the volatile organic compounds and to estimate
concentration of these compounds.

As a result, we can easily say that, ANN structures are
suitable for difficult quantification problems and can be
used efficiently for detection of unknown gas
concentrations if training of networks is done well.
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