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Abrtrrct

The carcade and parallel artificial neural netywrks
(ANN) sttttcture were used to esfimation the
concenhation of wlatile orgoilc compounds An anay
of piezoelectric quarE crystals were ased to detect
volafile organic gases. Steafr-state frequency shifis
have been ased as the input patterns for ANN
struclures. The netvo* sfiuctures and network
pe rform an ce s vtere di san sse d.

I Intrcduction

Toluene and other volatile organic vapous in anbent
air are kno$,n to be reactive photochemically, and can
have hardrl effects upon long-tern eryosur€ at
modcrat€ levets. Tb€sc tlTc orgadc compurd are
widely us€d as a solvent in a large number chemical
infustry and in printing plants Ul.
Develqing arld designiag sensors for the specific
detection of hazarb,us compon€nts in the mixture of
many others is iryortant [21.
In rccent years a vadety of selestfue ooating
(adsoftates) has been inestigated for chemical scnson.
The molectles to be det€ct€d (anatytes) int€ract with
th€se adsoftat€s. They Eay be identified quntitatively
by cbanges of physical or chemical parameters of
adsoftate I amlytc syst€tn such as tbe re,fractor index,
capacitance, condrctivity, urtotal mass. The last can be
monitored ry quafiz crystal microbalance (QCM)
seDsorr, which are widely used as thiclcress uronitors
[3,4].
However, the complete selectivity cannot be realised-
Thereforc, a vari$y of different methods have been
developed to o\rercone this problem by using an aray
of diftrent sens{xs and evaluating the &la in a
sutsequent data processing st€p sinilar to thc olfrctory
syst€m of humans with a few rccetrors and s$sequent
data evduation in the brain.
tutificiat neual netrvo* (A}.IN) mo&ls or simply
"neural nets" go by mary nrnes such as connectionist
models, parallel distrihted processing models, and
neuromorphic systems. Whatever the narne, all th€s€
nodels attcmfl to achiwe gmd performance via &nse

interponnection of simple comprtational elements. In
this rcspect, artificial neural net structur€ is bascd on
our present undestanding of tfological nenous
systems [5,61.
For complex tenlary mixhues and long-term

m€asur€m€Dts the artificial neual network offeru
advantages in p,rcdictability [fl.

2. Arfficiel Ncurel Net (ANN) Modek

Instead of performing a prognm of instructions
sequentially, nqual net models explore rrany
competing hypotheses simultaneousty using massively
parallel nets conposed o,f many coryrtational
elements connecfedby links with variable weigbts .
Conptational elernents ore nodcs usod in neural net
mo&ls ane rxrtrlfuEar, are tpically analogue, and may
be slow compared o modern digital cirflitry .
The net topologr, node cbarasteristics, and training or
learning rules specifies neunl n€t models. These rules
specify an initid s€t of weights and indicate how
c€iShts shoild be adas.ed during use to inprsve
performance. Both design procedrcs and training
rules are the topic of much cunent research [5,6].
The potential benefits of neural nets expend beyond
the high comprtation rat€s provided by massive
parallelism. Neural nets t:pcally provid€ a grrAtar
&gree of r&utness or ftult tolcrancc then e6qq66ftl
conprtations because there are merry mor€ Fcessing
nodes, each with prinarily local connections. Damage
to a few nO& or linkc thus neOd nOt inrFnir svenll
performance significantly. Most n€ural net algorithms
also adapt conncction weights in tfun€ to improve
perfornance based on qrrrent r€$lt [5,6]
The artificial neuron nas designed to imitate the first
order characteristics of the real biological neuron.
Essentially a set of inprts is aplieq eacb rc,presenting
the outtrrt of another neuron. Each inprt is multiplied
by a conesponding weight analogous to a syna6ic
stlength, and all the weighted inputs are then smmed
to det€rmin€ the activation level of the nauon [fl
Figure I depicts a model that iraplemena the above
functional description.
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Activation function used in this sttdy is f(x) =

V(l+exp(-x). Thus

Youel/(l+ery(-Ynet ))

Figurel. futificial neuron model

A multi-layer perc€,ltron (MLP) neural networls
trafuEd with the back propagation superviscd learning
method was used to train and test th€ data ohained
both from the simulation and the real tin€ systen
performances. Back propagation learning iwolves

using an iterative gradient{escent algorithm to
minimise the mean square error between the actual
outtrils of the network and the desir€d outptlts in

respons€ to given inPts [8].

Figure2. A Ml-p Artificial neural network

The following steps are involved in constructing and

training an MLP network [8] :
l) Defining the structure of the network ( the number

oflayers and neurons in each layer)
2) Selecting the learning parameters (learning rate

and momentun coefficien0
3) Initialising the corurection weighls
4) Selecting an infrt{utprt pair from the training

examples set and presenting it to the network

5) Cdctlating the oxput values of tbe neurons in
the hidden andouqP.t laYers

6) Comparing tbe ou$rt valucs of netrvork with the
desir€d outptt values and caloilating the outrut
errors

7) A4iusting the connection weights of the network
with the deqease the oulPrt errors

8) Repeating st€p 4 to 7 until the error is amepable
or a @efined number of iterations are
completed.

3. A Coeted QCM Scnror ArreY

Chemical and biochemical sensors have a wide
spectrum of aplications in the field of emrironrnental
sensing. Since totally selective sensors based upon
key-lock interactions do nd exist for the detection of
votatile organic vapours, the cross-sensitivities of
car€fully chosen sensor elements can be exploited in a
sensor array by aplylng different algorithms of multi-
component analysis and pattenr recogpition. The
criteria for the choice ofthese sensor elements are a
certain selectivity, srffcient sensitivity and long-term
stability, which ensure rceFoelcible resrlts over a
period of months [9].

In or&r to rneet these requirements we dn'eloped an
array of 4 QqM sensor denices with tctmkis allo$
thin substituted netalphalocyaninnes as a sensitive
layers.
The trans&c€rs emplcyed were aC\4 with
frrndamental fiequency of l0 MIlz. The rctup
consisted oftwo QCM for each sensor, one oftbem as
reference QCM. Each QCM was poc/q€d by an
oscillator circuit. A mixet circrrit was used for
measuring the freqrrncy shift of coated QCM
The frequency shifr of a qnrtz crystal, Af, due to
&position of some material (analyte moleanles) on or
its removd from the crystal surface is [3'41.
Af= - CAm

where C is a consgnt d€ternined by the vibrational
frequency, frequency constant ofthe crysal, density of
quartz, and efrerrive area of vibrating plate. Am is
correlated with the gas-?hase concentration of the
anabrte and therefore the frequency shift as well. The
relative nequency shift data were used to perform the
multi-component arratYsis.
Frequency shift (llz) vs. concentmtion (pn)

characteristics wer€ measu€d for toluene, benzene,
hexane. and acetone.
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Figure 3. Bloct diagram of frequency shift
measurement circuit

The test vapours were generated from cooled bubblers
using synthdic air as carrier gas and then diluted to
knowrr concentrations I comprter - driven mass flow
controllers. The humidity content was adjusted in the
same m4nner. All vapours were mixed and temperatue
stabilised before entering the cbamber. All sensor
responses were measured simultaneously in the same_
gas atmosphere.

4. Method

In the first step we us€d three layer AI.IN. Figure 5.
shows the structure of this ANN. For hidden layer we
used 10, 13 and 15 hidden neuron to see the effect of
hidden neuron number. In the second step we used
cascade and parallel ANN stnrctues.
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Figure 5. Neural architecture used to relate the sensor
signal to the analyte concenmtions

In the cascade ANN structurc, the outprts of the first
ANN are learning inputs of second AI.IN. Figure 6
shows the cascade AI.IN st$ctue.

I

a

iFI
IH'q13

Figure 4.0 An example @uency shifl
concentration (ppm) at room temperature
measu€ments
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Figure 6. Cascade Al.lN structure

In the parallel ANN structure, range of measurement
is divided into three parts, as an example, we used the
following nnges:

ANNI fo r0< ,<10000ppm
ANN2 for 1000 S. < 5000 ppm
ANN3fo r0< ,<1000ppm
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Once the AI.IN structures are trained nrccessfrrlly
and weights are determind only fotward propagation
is performed and consequently very simple and fast
discrimination can be achieved.

,oll5&rlgtut

Figure 8. Error graphics of AI.IN with respect to # of
hidden neurones

As seen in the figure t, F,(RAE) decr€ased with
increasing hidden neuron number. So, for otrlrnd
solutions, in the parallel and cascade stnrcture we
us€d 15 neuron in the hidden laYer.

It is shown that numbers of iteration in trainhg
improves the learning (figure 9).

Figure 7. Parallel Al{N structure

For the output we used a simple decision algorithm to

outprts of ANNI;
- If tbe detected concentrations are between 5000-

10000 ppm, then talce outFrt as Al'{Nl's output
- Ifthedetected concentations are between 1000'5000
pp4 then take outprt as AI'lN2's outprt
--f th" d€tect€d concentrations are between 0-1000
p:m, then take outFrt as ANN3's outPt

In the cascade and parallel ANN structules, Al'IN's

have three layers with 4 inprt, 4 outtrrt and 15 hi*ten

neurons. In the all AI'IN shrctures, learning coefficient

is 0.25 and momentum coefficient is 0.75'

For the performance measur€men! w€ use the mean

relative absolute error E@AE ) and the conesponding
maximun error nax(RAE) [6] ;

, ((p -P ))
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5. R€iltts rnd Dircussionr

The ability of AIrIN structures to estfunation of the

concentrations was observed.

Figure 9. Effects ofiterations

AI.IN results

Table I showed that, aU rcsults bave a good
performance for detection of gas concentrations and

Casca& and parallel Al'lN's redrce the E(RAE) and
MAX(EAR). The pcrfonnare of Al'lN's is impro'ved

ry Cascade and Parallel structur€s.
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Table l. Compqtison ot
E(RAE) MN((RAE)

A}.IN l0.E 43

Cascade AIrIN's 5.8 38
Parallel Al.{N's 6.23 33
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In the cascade AI.IN structure second AI.IN behaves as
a docision maker so improves the estimation results.

The parallel ANN stnrcture bfes advantage of the
fact that a neural-networt group decision is more
accurate thnn decision of network [l0].

6. Conclusions

In this paper tr€e tape of neural network architeclure
were discussed.

It has been found that this ANN structurcs are capable
both of discrimipating rcliably b€tw€€n various sorts of
the volatile organic compoutrA and to ctimat€
concentration of these compounds.

As a result we can easily say that, AhIN stnrcturcs are
suitable for diffcult Erantifcation problems and can be
trsed efficiently for detec{ion of unloown W
conoentrations fgalning of networls is donc well.
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