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ABSTRACT 
The channel length and width of a MOSFET are two 
important parameters selected by the experience of the 
designer. In this work neural networks are used to decide 
the most suitable selection of channel length and width of 
MOSFET for both p-channel and n-channel transistors. 
Multi layer perceptron (MLP) decided the aspect ratio. 
Training and test data are obtained from HSpice design 
environment with YITAL 1.5 micron parameters.  
 

I. INTRODUCTION 
The MOSFET channel length and channel width decision 
directly effects the current driving capability of the 
transistor [1]. Since the MOSFETs are modeled by too 
complex nonlinear equations, it is too hard to estimate and 
calculate the required channel length and width exactly. 
The input voltages are gate-source, drain-source, bulk-
source potentials and the output is drain current for a 
MOSFET. Under constant input voltages, channel length 
and width parameters nonlinearly change the output 
current.  
  
Supervised neural nets are good function approximators 
[2]. Therefore, they are suitable for prediction of transistor 
aspect ratios.  If the applied input voltages and the drain 
current of a MOSFET are given to a neural network as 
inputs, the channel length and width can be estimated by 
the network.  
  
Signal and noise behaviors of microwave transistors are 
modeled by MLP neural networks in [3], [4], [5], [6]. 
Small signal and noise behaviors are obtained using s-
parameters modeling approach. Inputs of the neural 
networks are operation frequency vector, small signal 
input voltage, small signal output current and 
configuration type. The outputs are scattering and noise 
vector parameters.  In all previous works analytical 
models are used to obtain the training and test data for the 
network.  

Unlike the previous papers, in this work, the transistor is 
not modeled by scattering and noise parameters or small 
signal model. The training and test data are obtained from 
the simulation of n- and p-channel MOSFETs in HSpice 
environment. The level 3 transistor model is used with 
YITAL 1.5µ [7] process parameters. The aspect ratio 
elements were obtained by MLP neural networks. The 
input gate-source voltage and the drain current of the 
MOSFET were applied to the inputs of MLP and the 
outputs were channel length and width parameter values. 
Drain-source and bulk-source voltages are assumed as 
constants. The neural network directly models the 
transistors and decides the required channel length and 
width values using given input voltage and required 
output current.            
 
  

II. ANALYTICAL LEVEL 3 MOSFET MODEL 
The Level 3 model has been developed for simulation of 
short-channel MOS transistors; it can represent the 
characteristics of MOSFETs quite precisely for channel 
lengths down to 2µm [1]. The YITAL 1.5µ  [7] process 
uses level 3 model. Although current and voltage 
equations are obtained as in the level 2 model, the short-
channel and other small geometry effects are considered 
for the threshold voltage and mobility calculations.  
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Equation (1) shows the general formula for calculating the 
drain current. Equation (2) and (5) show the linear and 
saturation operation regions of the drain current 
calculation, respectively for n-channel MOSFET.   
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In general form of an MLP network, the xi inputs are fed 
into the first layer of xh,1 hidden units. The input units are 
simply 'fan-out' units: no processing takes place in these 
units. The activation of a hidden unit (neuron j) is a function 
fj of the weighted inputs plus a bias, as given in equation (7).  
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The calculations of flat band voltage VFB, mobility µs and 
effective channel length Leff are shown in equations (3), 
(4) and (6), respectively. The symbols in the above 
equations are: ID drain current, VGS gate-source voltage, 
VDS drain-source voltage, VBS bulk-source voltage, VFB 
flat band voltage, γ body effect parameter, λ channel 
length modulation, 2ΦF surface inversion potential, COX 
total oxide capacitance, W channel width, µs short channel 
mobility, Leff effective channel length [1]. 
 
It is obvious from the equations the selection of W and 
Leff directly changes the drain current. It will be too hard 
to calculate the accurate aspect ratios from the equations 
since their parameters nonlinearly depend on each other. 
A neural network can easily estimate the aspect ratios. In 
this work, neural networks were used for function 
approximation for the equations above. These equations 
are over threshold models for the MOSFET. The sub-
threshold attitude is not modeled in this work. Equations 
for p-channel MOSFET are also valid [1].        
 
 

III. THE MULTILAYER PERCEPTRON 
Multilayer Perceptron (MLP) is the most common neural 
network model, consisting of successive linear 
transformations followed by processing with non-linear 
activation functions. MLP represents a generalisation of the 
single layer perceptron, which is only capable to construct 
linear decision boundaries and simple logic functions. 
However, by cascading perceptrons in layers complex 
decision boundaries and arbitrary Boolean expressions can 
be implemented. MLP is also capable to implement non-
linear transformations for function approximations. [8], [9], 
[10]. 
 
The network consists of a set of sensory units (source nodes) 
that constitute the input layer, one or more hidden layers of 
computation nodes, and an output layer. Each layer 
computes the activation function of a weighted sum of the 

layer's inputs. The input signal propagates through the 
network in a forward direction, on a layer-by-layer basis. 
The learning algorithm for multilayer perceptrons can be 
expressed using generalised Delta Rule and gradient descent 
since they have non-linear activation functions. [11], [12], 
[13].  
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Where wji is the weight of input i to neuron j, xpi is input i, 
that is, output i from the previous layer, for input pattern p 
and θj is the threshold value. The output of the hidden units 
is distributed over the next layer of xh,2 hidden units until the 
last layer of hidden units, of which the outputs are fed into a 
layer of xo output units [13]. 
 
 

IV.  THE IMPLEMENTATION CIRCUIT 
Fig. 1 shows the n- and p-channel MOSFET circuit 
connections to obtain the training and test data. Supply 
voltage VDD was kept constant 5 V and -5 V for n- and p-
channel, respectively. As can be seen from the Fig. 1, 
drain-source voltages VDS are equal to VDD and bulk-
source potentials VBS are 0 V.   
 
 In this application, the MOSFETs were modeled between 
1 V to 5 V range. The neural network structure shown in 
Fig.2 was used to model different operation regions. The 
MLP network consists of two inputs, seven hidden layer 
neurons and two output neurons. Activation functions of 
hidden and output layers were tangent hyperbolic sigmoid 
and linear transfer functions, respectively. The network 
was separately trained for each 1 V interval between 1 to 
5 V since the MOSFET cannot be accurately modeled in a 
wide input gate-source voltage range.  
 
Gate-source potential VGS and drain current ID were 
applied to the inputs of MLPs. The outputs of the MLPs 
were channel width W and effective channel length Leff. 
The training and test data were obtained from HSpice 
99.2. Both channel length and width were changed 
between 1.5µ to 3µ. Training data, in this range, were 
obtained with 0.5µ step for each parameter using  0.1 V 
step for gate-source voltage between 1 to 5 V. The test 
data were obtained randomly in the same range and they 
were different from the training data. Totally, 680 data 
was obtained from Hspice simulations. The simulation of 
network was performed in the Matlab 6.1 program. 640 of 
data were used to train the network and the remaining 40 
were applied for testing. After the gate-source or source-
gate voltages and required drain currents were applied to 



the neural networks, the estimated aspect ratios were 
simulated in HSpice to check the validity of drain currents 
at the same input voltages. 
 
          

 
 
 
Fig. 1. MOSFET circuits for producing test and training data: 
 a) n-channel, b) p-channel           
 
  

  
Fig. 2. The MLP neural network used for the implementation 
 
Results for n-channel and p-channel MOSFETs were 
shown in Fig.3, 4, 5 and 6. Fig.3 and 4 illustrates the 
performance of the networks for training data, and Fig.5 
and 6 for test data. For all figures the vertical axis is the 
amplitude of the drain current and the horizontal one is 
the gate-source or source-gate voltages with respect to the 
channel types. The sign showing current direction is not 
considered. The dotted lines in all figures represent the 
drain current with estimated aspect ratio and the solid 
lines represent the required drain currents. 

 
Fig. 3. The drain current (µΑ) v.s. gate-source voltage (V) for n-
channel training data  

 
Fig. 4. The drain current (µΑ) v.s. gate-source voltage (V) for p-
channel training data 
 

 
Fig. 5. The drain current (µΑ) v.s. gate-source voltage (V) for n-
channel test data     
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Fig. 6. The drain current (µΑ) v.s. source-gate voltage (V) for p-
channel test data 
 
The figures show that the estimated and required drain 
currents are very close to each other with maximum error 
of 7 %. This proves the effectiveness of the neural 
networks estimation.     
 

VI. CONCLUSION 
The application results proved that the neural networks 
can decide channel width and length values accurately. 
The network has a very close function approximation for 
the MOSFET level 3 model. This work has a great 
importance for the MOS VLSI designers who have to 
decide the aspect ratio parameters by the experience. 
Improvements in this work can make it possible to design 
analog or digital integrated circuits with perfect 
approximations to the required functions. In complex 
design programs like CADENCE, addition of the aspect 
ratio decision approximation would be very useful. The 
application is a good starting strategy for the design of 
complex MOSFET circuits.  
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