"ELEC0'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

E02.17/A2-08

Genetic Algorithm for Optimization of Angle Bar Inventory for Lattice
Towers Used in Distribution and Transmission Systems.

Gregory Levitin,

Senior Member IEEE

Reliability Department, Planning, Development & Technology Division, Israel Electric Corporation Ltd., 2
Haifa, Israel &

Abstract

The problem of achieving maximal economy when
angle bars for an electric lattice tower are made from the
purchased fixed length blanks is considered. The
two-stage optimization tool is proposed. At the first
stage, this tool searches for the optimal blank cutting
that allows all the necessary bars to be made from the
minimal number of blanks by minimizing waste
material. At the second stage, the optimal blank
purchasing schedule is found which minimizes the total
inventory cost in accordance with a preliminary defined
plan of lattice tower construction.

1. Introduction

The main building elements of lattice towers used in
distribution and transmission systems are angle bars of
different lengths and profiles. These bars are made by
cutting a blanks of standard length which are purchased
by the electric utility in accordance with its need. The
proper cutting of these blanks into angle bars allows the
total number of blanks to be minimized, which leads to
the total lattice tower cost reduction.

After such an optimization, the cost of blank orders
corresponding to different number of lattice towers can
be a function of this number that grows more slowly
than a linear function. Therefore, the larger the order,
the cheaper may be the single lattice tower cost. On the
other hand, if the order is greater than the need in the
lattice towers for the given time, the redundant angle
cars should be stored untill the time that, according to
the plan, additional lattice towers will be built. The
tradeoff exists between the storage cost and the
eco ,omnical savings achieved by increasing the order
size. Therefore, a compromising optimal solution which
minimizes the total inventory cost (sum of storage costs
and purchasing costs) during the given planning horizon
can be found. The shipping costs are neglected in this
paper which is justified by the fact that the electric
lattice tower blanks are usually not shipped separately
and, therefore, it is difficult to estimate their specific
portion in the total shipping cost as a function of their
quantity.

The planning period is considered in this work as a
sequence of stages during which the numbers of lattice
towers to be built are defined. The optimal blank
purchasing is considered to be a combination of two
separate optimization problems: (I} optimal blank
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cutting and (II) determination of the optimal blank
purchasing schedule. A general optimization approach is
used for the both problems, namely a Genetic Algorithm
(GA). The basic GA procedures are adapted for solving
the problems.

As the intervals between different stages are short
enough, the interest rate effects are not considered in this

paper.
2. Problem formulation

According to its specification, each type of lattice
tower consists of a given number of angle bars of
different lengths and profiles. The total number of
different profiles is P. For each profile p (1<p<P), a list
{lni} (1<i<M,) is specified. This list defines lengths of
bars which should be supplied. Here M, is the total
number of bars with profile p. The entire set of angle
bars the lattice tower consists of is referred to as
complete bar set (CBS).

The angle bars are cut off from blanks that have fixed
length L. To produce N lattice towers (N CBSs) the
blank set Q(N)={Q,(N), 1<p<P} should be purchased
where Q,(N) is the number of blanks of profile p
necessary to cut the required angle bars of this profile.
The entire purchasing cost for Q(N) is

P
C(N) = 3 cpQp(N), (1)
p=1

where ¢, is the cost of single blank of profile p.

The costs C(N) can be minimized by solving the
optimal blank cutting problem. This problem is: how to
group the bars to be cut from the blanks so that all the
required bars of the given profile would be made using
the minimal number of blanks. For each p (1<p<P) the
problem can be formulated as follows:

X = arg{Q,(N,X) — min}

subject to

for 1<i<M,,

Mp
injlpigl‘ for ISjSQp,
i=1

where X is a matrix of decision variables. For each
xj€X: x;=1 if bar i is cut from blank j; otherwise X;=0.
The formulated problem is widely known as
one-dimensional bin packing problem [1]. It is proven
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that the problem' is NP-hard. Several algorithms are
suggested for solving this problem[1,5-10].

Note that rather frequently Q,(N)<N-Q(1) because
the increase in the required number of bars provides
more flexibility for optimal cutting. In the general case,
the optimal blank set purchasing cost C(N) is a
nonlinear function of order size N. Hence, it may be
profitable to distribute the blank set orders in such a
manner which allows the total inventory cost to be
minimized. This distribution should meet the demand at
each stage of planning horizon.

Assume demand D; to be given for each stage i
(1<i<K). If the order size at each stage is equal to the
demand, the total inventory cost is

K
Cior = 2.C(D;).
i=1

If at the first stage the order size corresponds to N,>D,
CBSs, the inventory cost at this stage is C(N)+sA,,
where A;=N,-D, is the remainder equal to number of
CBSs that should be stored after termination of stage
land s is the cost of storage required for one CBS
during one stage.

At the second stage, the minimal order size that can
satisfy the demand corresponds to M,;=max(0,D,-A))
CBSs. The remainder after ordering set Q(N5) is

Np-(D2-A)=Ny-D+No-D,
CBSs and the total inventory cost for two stages is
C(N; HC(N)+s(N-D1+N2-Dy)
etc. Assuming that at K-th stage the order size
corresponds to max(0,Dy-Ax.;) CBSs, we obtain the
total inventory cost for arbitrary feasible order
distribution N={N;| 1<j<K}:
K K-l i
Ciot =2 CN))+s52 3 (Nj-Dj),
1=] i‘—‘lj=l
where solution feasibility condition is:
Ni 2 Mi = max(O,Di - Ai—]):
i-l ) 3
max(0,D; - > (N;-Dj)), 1<i<K
j=1
The total inventory cost can also be expressed as
K K-I1
ClOI ES ZC(N'J‘FS Z(K-l)(Nl -Di)
i=1 i=1

To see that order distribution which is not equal to
demand distribution can lead to the total cost reduction,
let us estimate the effect of moving one CBS from stage
m order to an earlier order at stage m-1. (Initial
distribution N is assumed to be equal to the demand
distribution). It can be easily seen from (4), that
purchasing cost will change by

CNyp #1)+C(Ni-1)-C(Nyy-1)-C(Nw)
On the other hand, one more CBS should be stored at
stage m-1 which increases the total storage cost by s.
The total cost variation caused by the change in order
distribution is

)

150

C(Nup. 1+ 1)+C(Nip-1)-C(No 1 )-C(Ni ) +s.
If the total cost decreases, the change is justified.
Therefore, the condition of moving one blank set from
stage m order to stage m-1 order is

8 < CNm.))-CNin + D+CNm)-C(Npy-1).

The objective of the order optimization problem is to
find the order distribution N which minimizes the total
inventory cost:

N=arg {C,(N,s)—>min}. (&)

3. Optimization technique

A two-stage optimization approach is suggested in
this paper. In the first stage, the optimal cutting
procedure groups the required angle bars of each profile
in such a way that allows the required number of CBSs
to be obtained from the minimal number of blanks. This
procedure solves the problem (2) for each profile and for
different order sizes N and evaluates corresponding
minimal purchasing costs C(N) using (1). In the second
stage, the minimal cost order distribution is obtained for
the given demand distribution by solving optimization
problem (5) with costs obtained in the first stage.

The same optimization technique is used for solving
both optimization problems. This technique is Gencetic
Algorithm inspired by a principle of evolution. A brief
introduction to Genetic Algorithms is presented in [2].
More detailed information on GA can be found in
Goldberg’s comprehensive book [3], and the recent
developments in GA theory and practice can be found in
Ref. [4]. The GA was applied for solving bin-packing
problem in a number of works [5-10].

Unlike various constructive optimization algorithms
which use sophisticated methods to obtain a good single
solution, the GA deals with a set of solutions (population)
and tends to manipulate each solution in the simplest way
"Chromosomal" representation requires the solution to be
coded as a finite length string. The basic structure of the
version of GA used in this paper, which is referred to as
GENITOR [11], is as follows .

First, the initial population of N

constructed solutions (strings) is generated. Within this
population new solutions are obtained during the genetic
cycle using crossover and mutation operators. Crossover
produces a new solution (offspring) from a randomly
selected pair of parent solutions providing inheritance of
some basic properties of the parents in the offspring.

Mutation results in slight changes in the offspring
structure and maintains diversity of solutions. This
procedure avoids premature convergence to a local
optimum and facilitates jumps in the solution space.

Each new solution is decoded and its objective
function (fitness) values are estimated. These values,
which are a measure of quality, are used to compare
different solutions.

randomly
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The comparison is accomplished by a selection
procedure that decides which solution is better: the newly
obtained one or the worst solution in the population. The
better solution joins the population and the worse one is
discarded. If the population contains equivalent solutions
following selection, redundancies are eliminated and, as
a result, the population size decreases.

After new solutions are produced N, times, new
randomly constructed solutions are generated to
replenish the shrunken population, and a new genetic
cycle is started

The GA is terminated after N, genetic cycles do not
attain improvement of the best-in-population solution.
The final population contains the best solution achieved.
It also contains different near optimal solutions which
may be of interest in the decision making process.

To apply the genetic algorithm to a specific problem,
one has to define the solution representation as well as
the corresponding procedures. Since the two problems
that are to be solved by the GA have different nature, the
solution encoding technique and corresponding
crossover, mutation and solution fitness evaluation
procedures should also differ. The crossover operation
should create a feasible solution as offspring of a pair of
existing ones. The mutation should also provide
feasibility of solutions obtained by random changes in a
string representing a solution. The following is a
description of the encoding technique and basic
procedures for the optimization problems considered in
this work.

3 1. Solution representation and GA basic procedures
for Problem 1.

In this problem of blank cutting, a solution for
profile p is represented by M length string of integer
numbers which represent different angle bars. The order
in which the numbers appear in the string determines
their grouping within different blanks. Each number
should appear in the string only once. The following
procedure determines blank cutting based on the order
of bar numbers in the string:

Step 1. Set Y=0, k=1, R=0, H=0. Where Y is current
total length of angle bars cut off from the same blank, k
is current number of bars considered, R is the total
length of remainder and H is the total number of blanks
used.

Step 2. If k<M, perform Step 3; else stop the procedure

Step 3. Look for first string element g; (k<i<M,) such
that Y-+I(g)<L. If such an element exists perform step 4;
else perform step 5.

Step 4. Set Y=Y+l(g;). Swap the elements in positions
k and i and increment k by 1. Return to Step 2

Step S Find element g (k-1<j<M;) such that
1(g,)-1(gx.)=max while Y+I(g;)-Kgw.))<L.

Set Y=Y+(g;)-1(gx.1). Swap the elements in positions k-1
and j. Set R=R+L-Y, H=H+1, Y=0. Return to Step 2.

After the procedure termination, H is equal to the
total number of blanks needed (H=Q;) and R is equal to
the total remainder length. In order to let the GA look for
the solution with minimal number of blanks or,
equivalently, with minimal total remainder length, the
solution quality (fitness) is evaluated as R

Solution feasibility means that the solution string
contains all the bar numbers of the given profile, and
each number appears in the string only once. Any
omission or duplication of numbers constitutes an error.
A crossover procedure that provides offspring feasibility
which was first suggested in [12] and was proven to be
highly efficient [13] is used in this work. This procedure
first copies all the string elements from the first parent to
the same positions of the offspring. Then all the
offspring elements belonging to the fragment, defined as
a set of adjacent positions between two randomly defined
sites, are reallocated within this fragment in the order
they appear in the second parent. The following is an
example of the crossover procedure in which the
fragment is marked by bold font.
First parent: 8182 83 84 &5 6 87 83 2o L1o
Second parent: g7 23 o 2 84 85 &1 &3 &6 810

Offspring: 81 82 87 84 &5 83 86 88 & Lio-
The mutation procedure used in our GA just swaps

elements initially located in two randomly chosen
positions of the string. This procedure also preserves
solution feasibility

3.2 Solution representation and GA basic procedures
for Problem II.

In this problem each element g; of K-1 length integer
string represents the number of redundant CBSs that
should be made at stage i in addition to the minimal
possible number of CBSs. The solution string, therefore,
should contain K-1 integer numbers in the range 0<g;<G,
where G is the preliminary specified limit.

For each stage i (1<i<K) the minimal possible order
size M; is calculated using (3) (note that M;=D;) The
actual order size at stage i determined by the solution
string is defined as N;=M;+g;. At the last stage, the crder
size Ng is equal to M. For the given N={N; | 0<N;<K}
the total inventory cost (solution fitness) is evaluated
using expression (4).

The same crossover technique as used in [14] is
adopted in this work. In this technique the fragment of
the string is randomly chosen as a set of adjacent
positions. All the elements allocated within the fragment
are copied onto the child solution string from its first
parent, and the rest of the elements are copied from the
second one as in the following example.

First parent: 122 €3 84 85 86 £7 85 85 B0
Second parent: g g 83 84 85 86 87 8 89 L1o
Offspring: 2121 2384 &5 6 87 € o 1o

151




"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

The mutation procedure used is the same as for
Problem 1.

3 3. Computational effort

The C language realization of the algorithm on a
DEC station 5000/240 is currently in use in the Israel
Electric Corporation. The time required to obtain optimal
blank cutting for 12 CBSs consisting of 300 angle bars
by GA with population size 100 and 300 genetic cycles,
each containing 2000 crossovers, does not exceed 15
min. GA with the same parameters solves the optimal
blank purchasing schedule generation problem for 20
stages within 80 seconds.

4. Illustrative example

The lattice tower with CBS presented in Table 1 is
made of 128 angle bars of 6 different profiles. The bars
can be cut off from the blanks with length 9000 mm. The
costs of blanks of different profiles are also presented in
Table 1.

Table 1. CBS for a lattice tower

["Profile | Cost | Angle bars required |
per | m
1| 630 _ 873060: 4%2422; 8*1194 .
2 80 §¥2334; 2*1410; 4*1280; 8*1168, |
4*1030 J
[ 3 | 710 8*2791; 8*2256; 8*1660; 2*1516;
| 8*1380; 4*812 ‘
| 4 843 | 472256, 8*1670; 4*1036, 4*582 {
s 910 | 4¥3000
6 513 | 4*2670. 12*1125: 4*775

In the first stage of optimization, the optimal blanks
cutting problem was solved for different order sizes (the
example of optimal cutting of 8 blanks to obtain angle
bars of profile 3 for one CBS is presented in Table 2).

Table 2. Example of profile 3 blank cutting for single

lattice tower

| N Cutting bars Remainder |
[ L [ 2791 | 2256 | 1516 | 1516 | 812 109 |
[ 2 | 2256 | 2256 | 1660 | 1380 | 1380 68 |
|3 | 2791 | 2256 | 1380 | 1380 | 812 381
[ 4 [ 2791 | 1660 | 1660 | 1380 | 1380 129
[ 5 [ 2791 | 2256 | 1660 | 1380 [ 812 101
[ 6 | 2791 | 2256 | 1660 | 1380 | 812 | 101

7 | 2791 | 2256 | 2256 | 1660 | - | 37
[ 8 | 2790 | 2791 | 1660 | 1660 | - | 98

The minimal cost order sets with corresponding Q(N)
and C(N) for 1<N<I12 are presented in Table 3. This
table also contains the remainder indices o which are
equal to percentage of unused material. For each order
size N and profile p:

Mp
a=Q, L= Y1, /Q,-L).
i=1

One can see that this index has tendency to decrease with
growth of N, which causes a reduction in cost per CBS.
The comparison between functions C(N) and N-C(1) is
presented in Fig. 1, which illustrates how the savings
achieved by the optimal blank cutting grow as N
increases

The solutions of inventory optimization problem for
an 18-stage period are presented in Table 4. This table
contains demand in CBSs for each stage, the cost of
solution without CBS storage (N=D in each stage) and
costs for two optimal solutions obtained for different
storage costs. The order size distributions for these
optimal solutions are presented, as welil as the number of
CBSs stored at each stage.

21800 |
16800 |

11800 |

Cost ($)

6800

1800

12 3 4 5 6 7 8 9 10 M 12
N (CBS)

Figure 1: Order cost as_function of required No of CBSs

5. Conclusion

To minimize the purchasing and inventory cost of
angle bars used to build electric lattice towers, the
two-stage optimization algorithm is suggested. At the first
stage, the optimal blank cutting probiem is solved for
each type (profile) of the bars in order to minimize the
total material waste for different number of CBSs
ordered. At the second stage, the optimal blank
purchasing schedule is developed with respect to lattice
tower building plane and to bars storage cost. The total
inventory cost is minimized in this stage. Both problems
have similar combinatorial nature and, therefore, the same
optimization technique is used to solve them. This
technique is the biologically-inspired genetic algorithm
which imitates the evolution process. The basic GA
procedures are developed to fit the algorithm to the
specific problems. The algorithm is currently in use in the
Israel Electric Corporation.
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Table 3. Costs and contents of different order sizes

No of Blanks in Order

Type of Profile

Order —‘

Cost

a4 5 ($)

| o a C(N)

1094

| 1984 3333 1854.36

| 1094
458

T

| 839
3.81

TR
0.00 |

3448.08
4971.60

1

1.35
| 570

1111
476

6647.22
8316.81

Qs
4
71
10
3
17
20

 E—

| 381 8 0.00 9840.33

23

10 | 667

| 242 1151595

=
3.03

26

| 135 13166.37

30

1
| 381 12 | 000 14765.76

33

36

[ 203

14 | 476

15 | 222

[ 000

284 16441.38
18035.10

19558.62

16

Table 4. Optimal order distribution
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W
o
o
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Demand 121971.77
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Optimal ordered

for s=39.4

120243.96 stored

12
0

ordered

Optimal
for s=212

11995583 stored

12 |
0 |
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