
A SPLIT MEMORY SCHEME FOR EFFICIENT IMPLEMENTATION OF
FFT ALGORITHM

Christos Meletis Giannis Sifnaios Paul Bougas Kostas Marinis Kostas Asfis Kiamal Pekmestzi

e-mail: {chris, john, paul, kmarinis, kasfis, pekmes} @microlab.ntua.gr
Microprocessors and Digital Systems Laboratory, Department of Electrical and Computer Engineering,

National Technical University of Athens, 15773 Zografou, Athens, Greece
Phone +30 1 7722500

Key words: Digital signal processing, Fast Fourier Transform (FFT), Field Programmable Gate Arrays (FPGAs)

ABSTRACT

In this paper, we propose a new architecture for the
implementation of the N-point Fast Fourier
Transform (FFT), based on the Radix-2 Decimation in
frequency FFT algorithm. This architecture is based
on a split memory scheme and can compute the FFT in
N/2.(1+log2N) clock cycles.

I. INTRODUCTION
Modern telecommunication systems are based more than
ever before on digital signal processing for the
implementation of complicated protocols. High-speed
telecommunication systems such as OFDM (orthogonal
frequency division multiplexing) and DSL (digital
subscriber lines) need real-time computation of the N-
point DFT transform for large number of points (512 or
more).
There are many architectures proposed for the
implementation of the FFT algorithm that can compute
one N-point FFT transform in N clock cycles [2]-[3]-[5]-
[6]. However, these architectures demand a very large
circuit, since log2N complex multipliers are needed [5]-
[6]. This circuit is very complicated for on chip

implementation of telecommunication systems. For these
applications, architectures with only one butterfly are
more suitable. These architectures require two memories
(each with size of N complex words), one for the input
and one for the output data of the butterfly. These
schemes compute the FFT in N.log2N clock cycles. In this
paper, we propose a new architecture with the same
memory size, which can compute the FFT in N/2.log2N
clock cycles. This is achieved by splitting each memory in
two separate blocks with independent memory interfaces.

II. FFT ALGORITHM
The N-point Discrete Fourier Transform (DFT) is defined
as

 ∑
−

=

=
1

0

N

n

nk
Nnk WxX k=0, 1, …, N-1 (1)

where

 N
j

N eW
π2

−
= (2)

0
8W
1
8W
2

8W
3

8W

0
8W
2

8W

0
8W
2

8W

0
8W

0
8W

0
8W

0
8W

0x

1x

2x

3x

4x

5x

6x

7x

0X

1X

2X

3X

4X

5X

6X

7X

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

Figure 1. The 8-point FFT based on decimation in frequency

0
8W

1
8W

2
8W

3
8W

0
8W

2
8W

0
8W

2
8W

0
8W

0
8W

0
8W

0
8W

0x

1x

2x

3x

4x

5x

6x

7x
-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

0X

1X

2X

3X

4X

5X

6X

7X

Figure 2. The constant geometry 8-point FFT

0x

1x

2x

3x

4x

5x

6x

7x

0X

1X

2X

3X

4X

5X

6X

7X

U(0)

L(0)

U(1)

L(1)

L(2)

U(2)

L(3)

U(3)

U'(0)

L'(0)

U'(1)

L'(1)

L'(2)

U'(2)

L'(3)

U'(3)

U'(0)

L'(0)

U'(1)

L'(1)

L'(2)

U'(2)

L'(3)

U'(3)

RAM set 1 RAM set 1RAM set 2 RAM set 2

U(0)

L(0)

U(1)

L(1)

L(2)

U(2)

L(3)

U(3)

Figure 3. The organization of the data in upper (U) and lower (L) RAM

FFT algorithms permit an efficient implementation of the
DFT. Such an algorithm is the Cooley-Tukey Radix-2
Decimation in frequency FFT. This algorithm divides the
output sequence into even and odd-numbered samples [1].

 ∑
−

=
+

+=

1
2

0
2/

2
2

N

n

nk
NNnnk WxxX (3)

 ∑
−

=
+

+

+=

1
2

0
2/

2
12

N

n

nk
N

n
NNnnk WWxxX (4)

where k=0, 1, …, N/2-1

If we continue the decimation for every one of the above,
then this algorithm can be represented with a flow graph
like the one in Figure 1, where the 8-point FFT is shown.
The output of this algorithm is in bit-reverse order.
All the calculations are performed by 2-input butterfly

units like the one shown in Figure 4 [1].

+

+ x
-

+
+

+
s
kx

s
Nkx 2/+

s
kX 2

s
kX 12 +

[]11 2/2 −− ss k
NW

Figure 4. 2-input butterfly unit

If index s indicates the stage of butterflies (s=1, 2, …,
log2N) then the output of the butterfly units is given by (5)
where k=0, 1,… , N/2-1 and [x] is the integer part of x.

 () []11 2/2
2/12

2/2

−−

++

+

−=

+=
ss k

N
s

Nk
s
k

s
k

s
Nk

s
k

s
k

WxxX

xxX
 (5)

For an N-point FFT we need n=log2N stages of butterflies.
Each butterfly unit consists of two complex adders, that is

four adders, and one complex multiplier, which, actually,
consists of four multipliers and two adders. Therefore, for
the butterfly unit we need a total of four multipliers and
six adders.
By rearranging the nodes of Figure 1 we come up with the
geometry of Figure 2. In this figure, we have the same
geometry for each stage. This constant geometry is
suitable for implementation, since the same approach can
be used for the operations of all stages. Therefore, the N-
point FFT algorithm can be implemented using two sets
of RAM and a butterfly unit like the one shown in Figure
4, which uses the RAMs for reading the inputs and storing
the outputs as shown in Figure 3, where the 8-point FFT
algorithm is presented.

III. THE ARCHITECTURE
The implementation proposed can execute one butterfly
operation every clock cycle. For this to be possible, the
circuit must have the ability to read both inputs and store
both outputs of the butterfly in one cycle. This is achieved
by partitioning each RAM set into two RAMs: RAM U
(upper) and L (lower) for RAM set 1 and U' and L' for
RAM set 2, as shown in Figure 3. By storing the data in
the appropriate memory addresses, shown in the
parenthesis, we ensure that both the inputs and the outputs
are stored in different RAMs and, therefore, can be
accesses in the same clock cycle. Therefore, the
implementation of each stage is achieved in N/2 and the
full FFT in N/2 . log2N clock cycles.

Butterfly unit

RAM U

RAM L

RAM U'

RAM L'

COEF ROM

Figure 5. Block diagram of the architecture proposed

The architecture proposed for this algorithm is shown in
Figure 5. The circuit, besides the two sets of RAM (RAM
U-L and RAM U'-L'), consists of a ROM and a butterfly
unit that performs the calculations. Each one of the four
RAMs can store N/2 complex numbers, so we need a total
of 2N words storage capacity. The ROM contains the N/2
complex FFT transform coefficients, where transform
coefficient k

NW is stored at address k (k=0, 1, …, N/2-1).
The input data are initially stored in RAM U and L. The
butterfly unit performs all the operations of the first stage
by reading in every clock cycle two complex numbers
from RAM set U-L and one transform coefficient from
the ROM and storing the two outputs to RAM set U'-L'.
When after N/2 clock cycles all the operations of the first
stage have been performed, then the butterfly unit

proceeds to the next stage where the inputs are read from
RAM set U'-L' and the outputs are stored to the RAM set
U-L. This procedure is repeated log2N times in order to
implement the FFT algorithm. Next, the output of the
results of the FFT from the one RAM set requires N/2
clock cycles while at the same time the new input data are
stored in the other RAM set. Consequently the total FFT
computation time is N/2.(1+log2N).
This architecture allows the spiting of each RAM set in
such a way that the input and the output of the butterflies
are always from different RAMs. The organization of the
data in the four RAMs for the 8-point FFT transform is
shown in Figure 3. This organization allows the
simultaneous reading of the two inputs (one from U and
one from L) and storing of the two outputs (one to U' and
one to L' or vice versa) of the butterfly.
The simplified circuit of the architecture proposed is
shown in Figure 6. A control unit produces the source
addresses SA1 and SA2 for reading the inputs of the
butterfly unit, the destination address DA for storing the
outputs of the butterfly unit, the coefficient address CA
for reading the transform coefficients from the ROM and
the control signals C1 and C2 for the routing of the data
between the butterfly unit and the RAMs. Most of the
signals produced by the control unit are the same for all
stages of butterflies, because the implementation is based
on the constant geometry FFT algorithm. The control unit,
swaps the functionality of the RAM sets U-L and U'-L',
using the appropriate signals, in order to proceed from one
stage to the next. In addition, the control unit produces the
coefficient addresses CA for each stage of butterfly
operations. For the 8-point FFT transform, the signals
produced by the control unit are shown in Table I. All of
these signals can be produced using a counter that counts
the butterfly operations of each stage. For the N-point
FFT, if k=kn-2kn-3…k1k0 is the counter value, where
n=log2N, then the signals mentioned above are given in
(6).

 C1=k0
 C2=kn-2
 SA1= 13-n2-n0 a kkk … (6)

 SA2= 13-n2-n0 a kkk …
 DA= 03-n2-n k kk … (= counter)

The same counter can produce the coefficient address CA
that depends on the stage of the butterflies. For the N-
point FFT transform the coefficient address is given by
(7).

 321

zeros 1
 1-s3-n2-n 0...00k...kkCA
−

=
s

 (7)

where s is the current stage (s=1, 2, …, n).

Table II shows the coefficient addresses for each stage for
the 1024-point FFT.

Butterfly
unit

0

1

0

1

SA1

SA2

0

1

0

1

DA

DA

C2

C2

C1

C1

I1

I2

O1

O2

RAM
U (U') D

A

RAM
L (L') D

A

CA
COEF
ROMD

A

RAM
L' (L)D

A

RAM
U' (U)D

AUD

LD

U'D

L'D

kx

N/2kx +

2kx

12kx +

Figure 6. The simplified circuit of the architecture proposed

Table I

Signals produced by the control unit and data routing for the 8-point FFT.

Counter Butterfly
 (k) C1 C2 SA1 SA2 DA I1= kx I2= 2/Nkx + DU' DL'

00 (0) 0 0 00 (0) 10 (2) 00 (0) x0 x4 X0 X1
01 (1) 1 0 10 (2) 00 (0) 01 (1) x1 x5 X2 X3
10 (2) 0 1 01 (1) 11 (3) 10 (2) x2 x6 X5 X4
11 (3) 1 1 11 (3) 01 (1) 11 (3) x3 x7 X7 X6

Table II
Coefficient addresses for the 1024-point FFT

Stage Coefficient ROM Address (CA)

1 k8k7k6k5k4k3k2k1k0
2 k8k7k6k5k4k3k2k1 0
3 k8k7k6k5k4k3k2 0 0
4 k8k7k6k5k4k3 0 0 0
5 k8k7k6k5k4 0 0 0 0
6 k8k7k6k5 0 0 0 0 0
7 k8k7k6 0 0 0 0 0 0
8 k8k7 0 0 0 0 0 0 0
9 k8 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0

IV. IMPLEMENTATION
The most time critical part of the design was the butterfly,
hence we concentrated our efforts in implementing it in an
optimal way. More specifically, we tried both
combinational and pipelined versions for the multipliers
used in the butterfly. In the combinational version, a real
multiplication is computed in a single cycle. The
computation latency is minimized, at the expense of a
longer critical path, resulting in a lower operating
frequency. In the pipelined version, the multiplier has four
levels of internal pipelining, and registers at the output
stage, resulting in a latency of 5 clock cycles. The
partitioning of the critical path of the multiplier by the
incorporation of the pipeline registers yielded a smaller
clock cycle, hence a higher operating frequency was
achieved.

The implementations of the proposed architecture were
targeted at the Xilinx Virtex XCV1000E-6. The Virtex-E
FPGAs comprise of two major configurable elements:
Configurable Logic Blocks (CLBs) and Input/Output
blocks (IOBs). The CLBs are divided into two slices each
and provide the functional elements for constructing logic.
The IOBs provide the interface between the package pins
and the CLBs. The CLBs interconnect through a General
Routing Matrix (GRM), an array of routing switches
located at the intersections of horizontal and vertical
routing channels. The main reasons for the selection of
Virtex-E series as target devices are that they incorporate
fast and efficient routing resources (GRM), and a large
number of internal memory blocks, named Block
SelectRAM+. The Block SelectRAM+ are embedded
memory blocks, organized in columns starting at the left
and right outside edges of the device and inserted every
12 CLB columns [7]. This organization allowed a more
efficient placement and routing of the design.
The designs were implemented in RTL VHDL. The
Exemplar Leonardo Spectrum 2000.1a and Xilinx
Foundation 3.1i tools were used for synthesis and
implementation, respectively. All implementation runs
were targeted at maximum speed with normal
optimization effort, and constraints applied at the critical
paths to reduce routing delays. We let the implementation
tools place and route the designs automatically, without
any manual floorplanning or routing. It is expected that
even higher performance can be achieved by manual
floorplanning and routing. All designs were fully tested,
simulated and verified using the Model Technology’s
ModelSim v.5.2e simulator.

Table III
FFT Implementation results for the XCV1000E-6

N Multiplier
Type Slices LUTs FFs Block

RAMs
fmax

(MHz)

Throughput
(TP)

(Msamples/s)

TP/Slices
(Ksamples/s/

Slices)
256 Pipelined 1891 3263 2642 18 68.790 14.9 7.9

 Comb. 1680 3198 880 18 50.098 11.2 6.6
512 Pipelined 1905 3274 2656 28 66.872 13.2 6.9

 Comb. 1687 3203 894 28 48.578 9.8 5.8
1024 Pipelined 1920 3298 2670 56 64.416 11.7 6.0
 Comb. 1692 3217 908 56 44.514 8.1 4.8

The multipliers used were fully customizable, relationally
placed IP cores provided by Xilinx. The relational
placement option allows the multiplier cores to be used as
pre-placed hard macros, easing the placement and routing
effort, and providing more predictable results between the
different implementation runs. The datapaths were 48-bits
wide for data (24-bits real and imaginary parts), and 32-
bits for the coefficients, in order to maintain a reasonable
amount of precision.
The results from the various implementations are
illustrated in Table III. As was expected, the pipelined
implementations yield higher operating frequencies, at the
expense of hardware area. In the same table, a hardware
performance metric is also given, defined as the ratio of
the throughput vs. hardware complexity. This metric can
be a useful means of comparing the various
implementations. As can be seen from Table III, the
pipelined implementations yield higher hardware
performance compared to the combinational ones.

V. CONCLUSIONS
The architecture proposed computes the N-point FFT
algorithm, where N is a power of two, in N/2.(1+log2N).
The circuit consists of one complex multiplier, two
complex adders, one ROM for the N/2 complex transform
coefficients and a RAM with capacity of 2N complex
words partitioned into four independent memories of N/2
complex words.
Using the proposed architecture, we achieved the
doubling of the processing speed of the FFT by
partitioning the RAM sets for the inputs and the outputs
of the butterfly into upper and lower part, so that we can
read and store the two inputs and the two outputs of the
butterfly in one clock cycle. As a result, one full butterfly
computation is performed in every clock cycle. The
complexity of the control unit has not been increased,

since all the control signals can be directly (without extra
logic) produced by a simple counter. This is possible due
to the partitioning method that has been applied on the
constant geometry FFT algorithm.

Acknowledgement:
The work presented in this paper was partially funded by
the Greek General Secretariat for Research and
Technology (GSRT) project 99ED481.

REFERENCES
1. A.V. Oppenheim and R.W. Schafer, "Digital Signal

Processing", Prentice Hall, 1975
2. L.-W Chang and M.-Y. Wu, "A new systolic array

for discrete Fourier transform", IEEE Trans. Acoust.,
Speech, Signal Processing, vol.36, pp.1165-1167,
Oct. 1988.

3. N. R. Murphy and M. N. S. Swamy, “On the real-
time computation of DFT and DCT through systolic
architecture,” IEEE Trans. Signal Processing, vol. 42,
pp. 988–991, Apr. 1993.

4. J. Choi and V. Boriakoff, “A new linear systolic array
for FFT computation,” IEEE Trans. Circuits Syst. II,
vol. 39, pp. 236–239, Apr. 1992.

5. V. Boriakoff, “FFT computation with systolic arrays,
a new architecture,” IEEE Trans. Circuits Syst. II,
vol. 41, pp. 278–284, Apr. 1994.

6. C.-H. Chang, C.-L. Wang, Y.-T. Chang, "Efficient
VLSI Architectures for Fast Computation of the
Discrete Fourier Transform and Its Inverse", IEEE
trans. on signal processing, vol. 48, pp. 3206-3216,
Nov. 2000.

7. Xilinx Inc.: “Virtex-E 1.8V Field Programmable Gate
Arrays”, http://www.xilinx.com/partinfo/ds022-2.pdf

