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ABSTRACT 

In this paper, we propose a new architecture for the 
implementation of the N-point Fast Fourier 
Transform (FFT), based on the Radix-2 Decimation in 
frequency FFT algorithm. This architecture is based 
on a split memory scheme and can compute the FFT in 
N/2.(1+log2N) clock cycles.  
 

I. INTRODUCTION 
Modern telecommunication systems are based more than 
ever before on digital signal processing for the 
implementation of complicated protocols. High-speed 
telecommunication systems such as OFDM (orthogonal 
frequency division multiplexing) and DSL (digital 
subscriber lines) need real-time computation of the N-
point DFT transform for large number of points (512 or 
more).  
There are many architectures proposed for the 
implementation of the FFT algorithm that can compute 
one N-point FFT transform in N clock cycles [2]-[3]-[5]-
[6]. However, these architectures demand a very large 
circuit, since log2N complex multipliers are needed [5]-
[6]. This circuit is very complicated for on chip 

implementation of telecommunication systems. For these 
applications, architectures with only one butterfly are 
more suitable. These architectures require two memories 
(each with size of N complex words), one for the input 
and one for the output data of the butterfly. These 
schemes compute the FFT in N.log2N clock cycles. In this 
paper, we propose a new architecture with the same 
memory size, which can compute the FFT in N/2.log2N 
clock cycles. This is achieved by splitting each memory in 
two separate blocks with independent memory interfaces. 
 

II. FFT ALGORITHM  
The N-point Discrete Fourier Transform (DFT) is defined 
as  
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Figure 1. The 8-point FFT based on decimation in frequency 
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Figure 2. The constant geometry 8-point FFT 
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Figure 3. The organization of the data in upper (U) and lower (L) RAM 

 
 
FFT algorithms permit an efficient implementation of the 
DFT. Such an algorithm is the Cooley-Tukey Radix-2 
Decimation in frequency FFT. This algorithm divides the 
output sequence into even and odd-numbered samples [1].  
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where k=0, 1, …, N/2-1 
 
If we continue the decimation for every one of the above, 
then this algorithm can be represented with a flow graph 
like the one in Figure 1, where the 8-point FFT is shown. 
The output of this algorithm is in bit-reverse order. 
All the calculations are performed by 2-input butterfly 

units like the one shown in Figure 4 [1].  
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Figure 4. 2-input butterfly unit 

 
If index s indicates the stage of butterflies (s=1, 2, …, 
log2N) then the output of the butterfly units is given by (5) 
where k=0, 1,… , N/2-1 and [x] is the integer part of x. 
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For an N-point FFT we need n=log2N stages of butterflies. 
Each butterfly unit consists of two complex adders, that is 



four adders, and one complex multiplier, which, actually, 
consists of four multipliers and two adders. Therefore, for 
the butterfly unit we need a total of four multipliers and 
six adders. 
By rearranging the nodes of Figure 1 we come up with the 
geometry of Figure 2. In this figure, we have the same 
geometry for each stage. This constant geometry is 
suitable for implementation, since the same approach can 
be used for the operations of all stages. Therefore, the N-
point FFT algorithm can be implemented using two sets 
of RAM and a butterfly unit like the one shown in Figure 
4, which uses the RAMs for reading the inputs and storing 
the outputs as shown in Figure 3, where the 8-point FFT 
algorithm is presented. 
 

III. THE ARCHITECTURE 
The implementation proposed can execute one butterfly 
operation every clock cycle. For this to be possible, the 
circuit must have the ability to read both inputs and store 
both outputs of the butterfly in one cycle. This is achieved 
by partitioning each RAM set into two RAMs: RAM U 
(upper) and L (lower) for RAM set 1 and U' and L' for 
RAM set 2, as shown in Figure 3. By storing the data in 
the appropriate memory addresses, shown in the 
parenthesis, we ensure that both the inputs and the outputs 
are stored in different RAMs and, therefore, can be 
accesses in the same clock cycle. Therefore, the 
implementation of each stage is achieved in N/2 and the 
full FFT in N/2 . log2N clock cycles. 
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Figure 5. Block diagram of the architecture proposed 
 
The architecture proposed for this algorithm is shown in 
Figure 5. The circuit, besides the two sets of RAM (RAM 
U-L and RAM U'-L'), consists of a ROM and a butterfly 
unit that performs the calculations. Each one of the four 
RAMs can store N/2 complex numbers, so we need a total 
of 2N words storage capacity. The ROM contains the N/2 
complex FFT transform coefficients, where transform 
coefficient k

NW  is stored at address k (k=0, 1, …, N/2-1). 
The input data are initially stored in RAM U and L. The 
butterfly unit performs all the operations of the first stage 
by reading in every clock cycle two complex numbers 
from RAM set U-L and one transform coefficient from 
the ROM and storing the two outputs to RAM set U'-L'. 
When after N/2 clock cycles all the operations of the first 
stage have been performed, then the butterfly unit 

proceeds to the next stage where the inputs are read from 
RAM set U'-L' and the outputs are stored to the RAM set 
U-L. This procedure is repeated log2N times in order to 
implement the FFT algorithm. Next, the output of the 
results of the FFT from the one RAM set requires N/2 
clock cycles while at the same time the new input data are 
stored in the other RAM set. Consequently the total FFT 
computation time is N/2.(1+log2N). 
This architecture allows the spiting of each RAM set in 
such a way that the input and the output of the butterflies 
are always from different RAMs. The organization of the 
data in the four RAMs for the 8-point FFT transform is 
shown in Figure 3. This organization allows the 
simultaneous reading of the two inputs (one from U and 
one from L) and storing of the two outputs (one to U' and 
one to L' or vice versa) of the butterfly.  
The simplified circuit of the architecture proposed is 
shown in Figure 6. A control unit produces the source 
addresses SA1 and SA2 for reading the inputs of the 
butterfly unit, the destination address DA for storing the 
outputs of the butterfly unit, the coefficient address CA 
for reading the transform coefficients from the ROM and 
the control signals C1 and C2 for the routing of the data 
between the butterfly unit and the RAMs. Most of the 
signals produced by the control unit are the same for all 
stages of butterflies, because the implementation is based 
on the constant geometry FFT algorithm. The control unit, 
swaps the functionality of the RAM sets U-L and U'-L', 
using the appropriate signals, in order to proceed from one 
stage to the next. In addition, the control unit produces the 
coefficient addresses CA for each stage of butterfly 
operations. For the 8-point FFT transform, the signals 
produced by the control unit are shown in Table I. All of 
these signals can be produced using a counter that counts 
the butterfly operations of each stage. For the N-point 
FFT, if k=kn-2kn-3…k1k0 is the counter value, where 
n=log2N, then the signals mentioned above are given in 
(6). 
 
 C1=k0 
 C2=kn-2 
 SA1= 13-n2-n0 a kkk …  (6) 

 SA2= 13-n2-n0 a kkk …  
 DA= 03-n2-n k kk …  (= counter) 
 
The same counter can produce the coefficient address CA 
that depends on the stage of the butterflies. For the N-
point FFT transform the coefficient address is given by 
(7). 
 
 321

zeros  1
 1-s3-n2-n 0...00k...kkCA
−

=
s

  (7) 

 
where s is the current stage (s=1, 2, …, n). 
 
Table II shows the coefficient addresses for each stage for 
the 1024-point FFT. 
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Figure 6. The simplified circuit of the architecture proposed 

 
Table I 

Signals produced by the control unit and data routing for the 8-point FFT. 
 

Counter      Butterfly   
 (k) C1 C2 SA1 SA2 DA I1= kx  I2= 2/Nkx +  DU' DL' 

00 (0) 0 0 00 (0) 10 (2) 00 (0) x0 x4 X0 X1 
01 (1) 1 0 10 (2) 00 (0) 01 (1) x1 x5 X2 X3 
10 (2) 0 1 01 (1) 11 (3) 10 (2) x2 x6 X5 X4 
11 (3) 1 1 11 (3) 01 (1) 11 (3) x3 x7 X7 X6 

 
 

Table II 
Coefficient addresses for the 1024-point FFT 

 
Stage Coefficient ROM Address (CA) 

1 k8k7k6k5k4k3k2k1k0 
2 k8k7k6k5k4k3k2k1 0 
3 k8k7k6k5k4k3k2 0 0 
4 k8k7k6k5k4k3 0 0 0 
5 k8k7k6k5k4 0 0 0 0 
6 k8k7k6k5 0 0 0 0 0 
7 k8k7k6 0 0 0 0 0 0 
8 k8k7 0 0 0 0 0 0 0 
9 k8 0 0 0 0 0 0 0 0 

10  0 0 0 0 0 0 0 0 0 
 
 

IV. IMPLEMENTATION 
The most time critical part of the design was the butterfly, 
hence we concentrated our efforts in implementing it in an 
optimal way. More specifically, we tried both 
combinational and pipelined versions for the multipliers 
used in the butterfly. In the combinational version, a real 
multiplication is computed in a single cycle. The 
computation latency is minimized, at the expense of a 
longer critical path, resulting in a lower operating 
frequency. In the pipelined version, the multiplier has four 
levels of internal pipelining, and registers at the output 
stage, resulting in a latency of 5 clock cycles. The 
partitioning of the critical path of the multiplier by the 
incorporation of the pipeline registers yielded a smaller 
clock cycle, hence a higher operating frequency was 
achieved.  

The implementations of the proposed architecture were 
targeted at the Xilinx Virtex XCV1000E-6. The Virtex-E 
FPGAs comprise of two major configurable elements: 
Configurable Logic Blocks (CLBs) and Input/Output 
blocks (IOBs). The CLBs are divided into two slices each 
and provide the functional elements for constructing logic. 
The IOBs provide the interface between the package pins 
and the CLBs. The CLBs interconnect through a General 
Routing Matrix (GRM), an array of routing switches 
located at the intersections of horizontal and vertical 
routing channels. The main reasons for the selection of 
Virtex-E series as target devices are that they incorporate 
fast and efficient routing resources (GRM), and a large 
number of internal memory blocks, named Block 
SelectRAM+. The Block SelectRAM+ are embedded 
memory blocks, organized in columns starting at the left 
and right outside edges of the device and inserted every 
12 CLB columns [7]. This organization allowed a more 
efficient placement and routing of the design.  
The designs were implemented in RTL VHDL. The 
Exemplar Leonardo Spectrum 2000.1a and Xilinx 
Foundation 3.1i tools were used for synthesis and 
implementation, respectively. All implementation runs 
were targeted at maximum speed with normal 
optimization effort, and constraints applied at the critical 
paths to reduce routing delays. We let the implementation 
tools place and route the designs automatically, without 
any manual floorplanning or routing. It is expected that 
even higher performance can be achieved by manual 
floorplanning and routing. All designs were fully tested, 
simulated and verified using the Model Technology’s 
ModelSim v.5.2e simulator. 



Table III 
FFT Implementation results for the XCV1000E-6 

 

N Multiplier 
Type Slices LUTs FFs Block 

RAMs 
fmax 

(MHz) 

Throughput 
(TP) 

(Msamples/s) 

TP/Slices 
(Ksamples/s/

Slices) 
256 Pipelined 1891 3263 2642 18 68.790  14.9  7.9 

 Comb. 1680 3198 880 18 50.098  11.2  6.6 
512 Pipelined 1905 3274 2656 28 66.872  13.2  6.9 

 Comb. 1687 3203 894 28 48.578  9.8  5.8 
1024 Pipelined 1920 3298 2670 56 64.416  11.7  6.0 
 Comb. 1692 3217 908 56 44.514  8.1  4.8 

 
 
The multipliers used were fully customizable, relationally 
placed IP cores provided by Xilinx. The relational 
placement option allows the multiplier cores to be used as 
pre-placed hard macros, easing the placement and routing 
effort, and providing more predictable results between the 
different implementation runs. The datapaths were 48-bits 
wide for data (24-bits real and imaginary parts), and 32-
bits for the coefficients, in order to maintain a reasonable 
amount of precision.  
The results from the various implementations are 
illustrated in Table III. As was expected, the pipelined 
implementations yield higher operating frequencies, at the 
expense of hardware area. In the same table, a hardware 
performance metric is also given, defined as the ratio of 
the throughput vs. hardware complexity. This metric can 
be a useful means of comparing the various 
implementations. As can be seen from Table III, the 
pipelined implementations yield higher hardware 
performance compared to the combinational ones. 
 

V. CONCLUSIONS 
The architecture proposed computes the N-point FFT 
algorithm, where N is a power of two, in N/2.(1+log2N). 
The circuit consists of one complex multiplier, two 
complex adders, one ROM for the N/2 complex transform 
coefficients and a RAM with capacity of 2N complex 
words partitioned into four independent memories of N/2 
complex words. 
Using the proposed architecture, we achieved the 
doubling of the processing speed of the FFT by 
partitioning the RAM sets for the inputs and the outputs 
of the butterfly into upper and lower part, so that we can 
read and store the two inputs and the two outputs of the 
butterfly in one clock cycle. As a result, one full butterfly 
computation is performed in every clock cycle. The 
complexity of the control unit has not been increased, 

since all the control signals can be directly (without extra 
logic) produced by a simple counter. This is possible due 
to the partitioning method that has been applied on the 
constant geometry FFT algorithm. 
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