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ABSTRACT 

Analytical performance study is provided for 
DMUSIC algorithm. Theoretical variance expression 
is derived in matrix form for estimating the frequency 
parameters. It is demonstrated that theoretical 
variance expression is closely approximate the exact 
variance of DMUSIC. 
 

I. INTRODUCTION 
The problem of estimating the parameters of damped 
sinusoidal signals in the presence of additive noise has 
received significant attention in signal processing 
literature. The difficulty of the problem stems from the 
fact that the damped sinusoidal signals is nonstationary 
and correlation matrix can not be found [1]. Several 
algorithms have been proposed to solve this problem.   
 
Damped MUSIC (DMUSIC) is one of these algorithms 
and it was proposed in [2]. It is called DMUSIC because it 
looks like MUSIC algorithm. But, there are several crucial 
differences between MUSIC and DMUSIC algorithms in 
that MUSIC is for parameter estimation of undamped 
sinusoidal signals. A numerical performance study of 
DMUSIC and an application for 2D NMR signals can be 
found in [2]-[3]. 
 
In this paper, First Order Analysis (FOA) is provided for 
DMUSIC and theoretical variance expression is presented 
in matrix form for estimating the frequency parameters. 
Then, performance analysis of DMUSIC is investigated 
analytically and compared with the numerical results. 
CRB is used as a yardstick in the performance analysis. 
 
It is known that under weak conditions, the variance of 
any unbiased estimate is always bounded below by CRB 
[4]-[5]. Accordingly, the CRB frequently is used as a 
benchmark for assessing the performance of practical 
estimators. 

 
 
 

II. MODEL DESCRIPTION 
Data model consists of p  complex damped sinusoids in 
the presence of additive noise is given below: 
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where iα  is the amplitude, iϕ  is the phase, iβ  is the 
damping factor, )2,0( πω ∈i  is the frequency of the i . 
complex damped sinusoid, ),...,2,1( pi = , )(ke  
represents the additive noise and N  is total number of 
data samples.  
 

III. DMUSIC [2,3] 
DMUSIC is based on the singular value decomposition of 
the prediction matrix and use directly rank-deficiency and 
the Hankel properties of the prediction matrix in the 
estimation. Frequency and damping factor are estimated 
simultaneously by 2-D search in DMUSIC.  
Data model (1) is rearranged as below: 
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where iii js ωβ +−= , +∈ Riβ  and )2,0( πω ∈i . DMUSIC 
algorithm can be derived only if data matrix is set up in a 
structural way. To derive the DMUSIC algorithm prediction 
matrix A  is set up as below: 
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where pLLN ≥− ),min( . 
From (3) A  can be written as: 
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where )( isr  and S  are signal vector and signal matrix that 
are defined as respectively: 
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C  is pxp diagonal matrix with ),..,,()( 21 pcccdiag =C  

and [ ] 1
0,)( −

=+= L
jijieN  is the noise matrix. 

 
If is ’s are distinct, then )( isr  for  pi ,...2,1=  are linear 
independent and hence S  is full column rank. Since rank 
of C  is p , the rank of A  is equal to p  if there is no 
measurement noise.  Now assume that there is no noise. 
By means of singular value decompositon A  can be 
decomposed into the product of three matrices.  
 

HUDVA =    (6) 
 
where U and V  are unitary matrices, D  is diagonal 
matrix with the elements below: 
 

)0,...,0,,...,,()( 21 pdiag ρρρ=D ,  pρρρ ≥≥≥ ...21   (7) 
 
From (6) 
 

UDAV =    (8) 
 
 
From (6) and (7) we have the following orthogonality 
relations: 
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where [ ]Lp vv ,...,1+=nV . 
 
From (4)  

0=k
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Since both S  and C  are full rank the following equalites 
can be written: 
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0)( =k
T

i vsr ,  Lpk ,...,1+=  and pn ,...,1=  (12) 
 

Hence, 0)( =srT
nV  only when pssss ,...,, 21= . 

Therefore is  can be obtained by finding s  which makes 

0)( =srT
nV . When noise exist, orthogonality relations 

(9) no longer hold. In this case, signal vectors that most 
closely orthogonal to noise subspaces are searched. 
Hence, is  or },{ ii βω  can be obtained by finding the peak 
of the following spectrum: 
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where 
r
rr =~ , ‘ + ’ is complex conjugate and ‘ T ’ is 

transpose.  
 

IV. FIRST ORDER ANALYSIS (FOA) 
As }ˆ,ˆ{ βω is a minimum point of ),( βωf , we must have 
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After the first order Taylor series expansion of )ˆ,ˆ( βωωf  

and )ˆ,ˆ( βωβf  at },{ ×× βω , { } { }p
ii

p
ii 11 , =×=× ∈∈ ββωω , 

)ˆ( ×−ωω  and )ˆ( ×− ββ  estimation errors can be 
expressed as below: 
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From (16), variance of DMUSIC for estimating the 
frequency can be obtained as follow: 
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where ij

ij )( 1−= AA , )2,1,( =ji  and E  is expectation 
operator.  
 
A  and h  are given below : 
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Elements of A  and h  are given below:  
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Where ‘∗ ’ is complex conjugate transpose. 
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below: 
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Vector derivatives in (25)-(34) are element-wise 
derivative taken with the respect to scalar as in (35): 
 

T
Lrrrr

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂

=
∂
∂ −

θθθθ
121 ....   (35) 

 
V. PERFORMANCE ANALYSIS 

Performance of the DMUSIC is measured by the 
theoretical variance expression (17). Theoretical variance 
is compared with the exact variance that is calculated 
numerically and the CRB. In numerical example we 
assume that the data model (1) consists of two complex 
damped sinusoids in the presence of complex AWGN 
with 2σ  variance. Non-matrix CRB expressions for two 
complex damped sinusoids are presented in [6]. 
 
Example: Consider the case of 100=N , 121 == αα , 

021 == ϕϕ , 11 =ω  and δωωω += 12  with  four 
different choices of frequency difference (δω ) and 
damping factors: 
 
(a) Ω= 5.0δω , 01.01 =βN , 01.02 =βN  
(b) Ω= 5.0δω , 11 =βN , 01.02 =βN  
(c) Ω= 5.1δω , 01.01 =βN , 01.02 =βN  
(d) Ω= 5.1δω , 11 =βN , 01.02 =βN  
 

Where 
N
π2

=Ω , Fouirer resolution limit. 

Results are for 500 Monte Carlo trials.  The SNR   used in 

example is defined as 
2

2

σ
α i , 2,1=i . 

Figures are for frequency estimation of the first damped 
sinusoid. In figures the solid, dashed and dotted curves 
depict the CRB, exact variance of DMUSIC and 
theoretical variance of DMUSIC respectively. 
 

VI. CONCLUSION 
We have provided FOA for DMUSIC and derived 
theoretical variance expression for estimating the 
frequency parameters. It is demonstrated by a numerical 
example that theoretical variance expression closely 
approximate the exact variance of DMUSIC starting from 
the acceptable SNR  values for which the frequency 
difference is below the Fouirer resolution limit and from 
the low SNR  values for which the frequency difference is 
upper the Fourier resolution limit.  
 



 
Figure 1. Theoretical and exact variances of DMUSIC and the 
CRB for frequency estimation of first complex damped sinusoid 
when Ω= 5.0δω , 01.01 =βN , 01.02 =βN . 
 

 
Figure 2. Theoretical and exact variances of DMUSIC and the 
CRB for frequency estimation of first complex damped sinusoid 
when Ω= 5.0δω , 11 =βN , 01.02 =βN . 

 
Figure 3. Theoretical and exact variances of DMUSIC and the 
CRB for frequency estimation of first complex damped sinusoid 
when Ω= 5.1δω , 01.01 =βN , 01.02 =βN . 
 

 
Figure 4. Theoretical and exact variances of DMUSIC and the 
CRB for frequency estimation of first complex damped sinusoid 
when Ω= 5.1δω , 11 =βN , 01.02 =βN . 
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