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Abstract 

 
This paper is dealing with the solution of the hydrothermal 
scheduling problem by using evolutionary algorithm. The 
aim of this study is to minimize the fuel cost and ramping 
cost of thermal units by utilizing both hydro and thermal 
units optimally. In evolutionary programming, new 
generations are produced from randomly generated initial 
vector by Gauss and Cauchy mutations and they compete 
with parent vectors and each other. Better individuals are 
selected for the next generation. The new generation process 
lasts until either reach to defined iteration number or a 
minimum function value or the point where developed 
solutions are no longer different. 

 
1. Introduction 

 
By the hydrothermal scheduling problem, it is aimed to 

minimize the fuel costs and ramping costs of the thermal units, 
by utilizing both hydro units and thermal units optimally.  Since 
the objective function is nonlinear, it is required that the 
objective function express piecewise linear by using Langrange 
multiplier and gradient method or polynomial approaches. As 
Sinha says, these linearization let to obtain solutions that are not 
optimum and let increase in income losses [1]. In latest 
researches, evolutionary algorithms are used, because they are 
more efficient and closer to optimum value. Evolutionary 
algorithms are more flexible and stronger compared to other 
traditional methods. In this study, evolutionary programming 
(EP) is used. As Sinha stated, due to using competition and 
mutation as production and selection method, it shows more 
performance when it is compared to the other algorithms [1]. In 
EP, mutation is the only operation to obtain new generation. 
New generations are generated from parent vectors randomly 
according to a distribution. In this study, the new generations are 
generated by both Gauss and Cauchy mutations according to 
their own distributions. In this study, a hydrothermal scheduling 
problem is solved by evolutionary programming and its 
solutions are showed [1-3]. 

 
2. Formulation of the Problem 

 
The objective of hydrothermal planning is minimizing the 

system cost efficiently, by utilizing hydro units, which do not 
have any fuel costs. Two main factors affect thermal units’ 
costs; fuel costs and ramping costs. For this reason the objective 
function of the system is expressed as; 
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where PT is production of thermal units (MW) and RC is 
ramping cost ($). 

Power dispatch problem can be optimized considering the 
following constraints.  

Balance of power demand,
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where PH is production of hydro units (MW) and PD is power 
demand (MW). 

Capacity of thermal units,
maxmin

PTPTPT ≤≤  (3) 
 

Capacity of hydro units,
maxmin

PHPHPH ≤≤  (4) 

Change of water volume in the 
reservoir,
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Initial and final water volume, 0V)initial(V =  (6) 

                                               jV)end(V =  (7) 
Where q is inflow (acre-ft/h), s is spillage rate (acre-ft/h) and q 
is water discharge (acre-ft/h) if generating. 

Water discharge limits,
maxmin
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Water volume limits,

maxmin
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Hydro production is a function of water discharge so; 
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During ramping process, occurrence condition of ramping cost; 
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where RR is ramp rate of the unit (MW/min) and RER is ramp 
rate for elastic range (MW/min). 

jV)end(V =  (12) 
 
When ramping process is included, according to power output 
the operating cost can be explained as follows [2]. 
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where a0, a1, a2 are parameters of objective function. 
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Two main factors affect the life of the rotor; ramping cost 

and elastic range, which is the threshold for the ramping cost. 
For example, if the magnitude of power charge is within the 
elastic range, the ramping process does not shorten the life of 
the rotor. Ramping costs are incurred when the ramping 
excursion or change in power output exceeds the elastic range. If 
the ramping level is within the elastic range, then the cost is 
zero. Fig. 1 below shows the elastic ranges and ramping costs 
for different ramping rates. For example, consider a 20 minutes 
ramping process which results in 90 MW power increase. If the 
working time is 20 minutes, the ramping cost will be 225 USD. 
If the working time is 10 minutes, it will results only 45 MW 
without ramping cost [4-5]. 
 

 
 

Fig. 1. Ramping Cost Curve for Ramp Periods 
 

As a result, ramping cost is considered to be important both 
economically and physically. Due to high start up cost, it is 
uneconomical to start up and shut down the generators. For this 
reason, this start up and shut down constraints are not used for 
problems which include ramping costs and this provide life of 
the rotors to be longer [4-6]. 
 

3. Evolutionary Programming for the Hydrothermal 
Planning 

 
By defining Ip for the population number, every trial vector 

Qi i=1, 2, 3…, Ip is denoted randomly, from its own component 
within suitable intervals. A dependent water discharge qd is 
randomly selected in order to meet the starting and finish 
reservoir water volume constraint. On the other hand, 
independent water discharge, qj, j=1, 2, 3, ...,J, where, j is not 
equal to d (randomly denoted time interval) are stored in J-1 
dimensioned vector. In written MATLAB code, d is assumed to 
be equal to J. 

Qi=[q1, q2, q3,..,qJ-1]  is i. component of the developed 
population. J. component of every trial vector is selected 
randomly within qmin, qmax interval. For simplicity, 
overflowing is assumed to be zero and discharge is calculated. 
After calculating discharge, from equation 4, hydro production 
is calculated, and then by balance of power demand, required 
thermal power is distributed among thermal units with respect to 
their fuel costs and possible ramping costs. Thermal costs, 
constraint violation and possible ramping costs are calculated 
for population and added to the suitability function. 

In this study, new generations are generated by using both 
Gauss and Cauchy mutations with N(0,1) Gauss distribution and 
C(0,1) Cauchy variable. Thus, from every vector qj . q1j  Gauss 
mutation and q2j Cauchy mutation are generated from the 
following equations; 
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scaling cost, where Fit is the suitability function and β is the 
scaling constant. The objective function consists of new 
generated vectors which are sorted in ascending order and best 
values are selected and compete with the trial vector. The new 
generation process lasts until either reaching to defined iteration 
number or minimum function value or the point where 
developed solutions are no longer different. In this study, the 
process stopped when it reached to the maximum iteration 
number. 

The developed program consists of two components; main 
program and production. The flow diagram of the main program 
is illustrated in Fig. 2. In this part, as explained above, trial 
vectors and new generation vectors that are produced from trial 
vectors are generated. This procedure goes on until reaching the 
fixed iteration number [2-3, 7-11].  

 
Fig. 2.  The flow diagram of the main program 
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The flow diagram of the production function is illustrated in 
Fig. 3. In this part, the production variables qd, PTi, PH and Fit 
are calculated. 

 

 
 

Fig. 3.  The flow diagram of the production function 
 

4. Experiment 
 

The input parameters of the problem are following. 
 

Table 1. Capacity limits and ramping information of the thermal 
units 

 
 
 
 
 
 
 
 
 
 
 
 

 

Table 2. Thermal units fuel costs constants [12] 
 

Thermal 
Unit a a1 a2 

1 240 7 0.007 
2 200 10 0.0095 
3 220 8.5 0.009 
4 200 11 0.009 
5 220 10.5 0.008 
6 190 12 0.0075 

 
Table 3. Other constants 

 

Parameters Value 
Initial water volume 100.000 acre-ft 

Final water volume 60.000 acre-ft 

Minimum water volume 60.000 acre-ft 

Maximum water volume 120.000 acre-ft 

Parameters Value 
inflow 2.000 acre-ft 

Phmin 0 MW 

Phmax 1.100 MW 

Ip  (population size) 60 

B (scaling coefficient) 0.03 
 
Table 4. Demands of power generation in a given time interval. 
 

 Power  
Demand (MW) 

1 1200 

2 1500 

3 1100 

4 1800 

5 950 

6 1300 
 
The solutions of the problem are summarized in Table 5 and 
Table 6.  
 

Table 5. Power output of units 

 
 

Table 6 Production costs of power output 
 

Thermal  
Unit 

PT min 
 (MW) 

PT max  
(MW) 

RR  
(MW/min) 

RT 
 (min) 

1 100 500 50 30 

2 50 200 25 20 

3 80 300 35 25 

4 50 150 20 20 

5 50 200 25 20 

6 50 120 15 15 

Power 
Demand 
(MW) 

Output of 
PT1 

(MW) 

Output of   
PT2  

(MW) 

Output 
of PT3 
(MW) 

  
1200 304.53 121.81 182.72 
1500 304.66 121.86 182.8 
1100 305.41 122.17 183.25 
1800 304.85 121.94 182.91 
950 268.40 107.36 161.04 

1300 268.3 107.33 160.99 
Power 

Demand 
(MW) 

Output of 
PT4 

(MW) 

Output of 
PT5 

(MW) 

Output 
of PT6 
(MW) 

Output 
of PH 
(MW) 

1200 91.36 121.81 73.09 304.66 
1500 91.40 121.87 73.12 604.28 
1100 91.63 122.17 73.30 202.07 
1800 91.46 121.94 73.16 903.73 
950 80.52 107.36 64.42 160.90 

1300 80.50 107.33 64.40 511.14 

 
Power 

Demand (MW) 
Fuel  

Cost ($) 
Ramping 
Cost ($) 

Total  
Cost ($) 

1 1200 

61,490.98 3,748.76 65,239.7473

2 1500 
3 1100 
4 1800 
5 950 
6 1300 
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The fuel costs and realized ramping costs are shown for each 
thermal unit in Table 7.  
 
Table 7. Fuel costs and realized ramping costs for each thermal 

units 
 

 Generating 
(MW). 

Fuel  
Cost ($) 

Ramping  
Cost ($) 

Total  
Cost ($) 

1 304.54 3,020.96 214.11 3,235.07 
2 121.81 1,559.12 0.00 1,645.15 
3 182.72 2,073.63 137.49 2,211.12 
4 91.36 1,280.10 70.56 1,350.65 
5 121.81 1,617.77 0.00 1,704.65 
6 73.09 1,107.13 43.06 1,150.19 
     

 Generating 
(MW). 

Fuel  
Cost ($) 

Ramping  
Cost ($) 

Total  
Cost ($) 

1 304.67 3,022.42 214.14 3,236.56 
2 121.87 1,559.76 0.00 1,645.79 
3 182.80 2,074.54 137.50 2,212.05 
4 91.40 1,280.59 70.56 1,351.15 
5 121.87 1,618.41 0.00 1,705.30 
6 73.12 1,107.54 43.06 1,150.60 
     

 Generating 
(MW). 

Fuel  
Cost ($) 

Ramping  
Cost ($) 

Total  
Cost ($) 

1 305.42 3,030.89 214.34 3,245.23 
2 122.17 1,563.46 0.00 1,649.54 
3 183.25 2,079.86 137.60 2,217.46 
4 91.63 1,283.44 70.58 1,354.02 
5 122.17 1,622.16 0.00 1,709.08 
6 73.30 1,109.90 43.07 1,152.97 

 
After 700 iterations, the convergence scaling is shown Fig 4. 

In order to meet the demands, the optimum cost is calculated as 
65,239.74 $. 

 
 
 

5. Conclusions 
 

In this study, hydrothermal scheduling problem was solved 
with a developed evolutionary program. Convergence graph 
shows programs’ convergence success and also program has 
reached to a value which is more close to the optimum faster 
because of usage of deterministic competition rather than 
stochastic competition. In this study, deterministic competition 
is used, which means that from every parent vector and their 
generation, the fuel and ramping costs are calculated and these 
Ip solutions are sorted in ascending order. The first vector is 
selected and the program continues the process until the system 
reaches to the finishing conditions. Due to high start-up costs, it 
is not economical to start up and shut down frequently. Since the 
objective of generation scheduling in this study contains the start 
up and ramping costs, the unit on/off states can be determined 
economically by this method. So it is not necessary to have the 
min-times as constraints [4]. In conclusion, the hydrothermal 
problem is solved with evolutionary algorithms and systems 
management costs containing fuel costs and ramping costs are 
showed above and its convergence success confirm in the 
convergence graph. 
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Fig. 4. The change of total cost in terms of iteration number 
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