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Abstract—In this study, the finite field GF(2m) used in elliptic 
curve cryptography and their properties, elliptic curves for this 
usage, safety of elliptic curve cryptography are examined. 
Also, scalar multiplication block which is the most important 
and the most time consuming block used in elliptic curve 
cryptography protocols is designed and this block is described 
with VHDL. The block designed is programmed with FPGA 
and a simple El Gamal elliptic curve protocol is implemented 
with constituting computer interface. 
 

I. INTRODUCTION 
Elliptic curve cryptography (ECC) is developed 
alternatively RSA and DSA public key cryptosystems by 
Victor Miller and Neal Koblitz in 1985. The security of 
elliptic curve cryptography depends on discrete logarithm 
problem defined on an appropriate elliptic curve. The 
elliptic curve discrete logarithm problem can still not be 
solved in sub-exponential time. And so, this means 
elliptic curve cryptography provides equal security as 
RSA and DSA cryptography with smaller parameters. 
Working with smaller parameters is ideal for mobile 
phones or smart cards which requires high processing 
speed, power dissipation and smaller memory storage. 
Furthermore, there are many options for implementing 
elliptic curve cryptography, because implementation of 
elliptic curve cryptography is dependent on underlying 
finite field, algorithms for finite field arithmetic, elliptic 
curve and algorithms for elliptic curve arithmetic 
chosen.[1] 

 
II. FINITE FIELDS 

<G,*> algebraic structure, where G is a set and * is a 
binary operation, forms a group and satisfies the 
following axioms. 

• Closure: For ∀ x, y ∈  G, so x * y ∈  G 
• Associativity: For ∀ x, y, z ∈  G, so (x * y) * z = 

x * (y * z) ∈  G 
• Identity: For ∀ x ∈  G, so e ∈  G is the identity 

element provides x * e = e * x = x 
• Inverse: For ∀ x ∈  G, so y ∈  G is the inverse 

of x provides x * y = y * x = e 
If the * operation is abelian then the group is called an 
abelian group. 
Let (+) and (×) are two binary operations defined over the 
set F. If the following axioms are satisfied then F is called 
a finite field.  

• F forms an abelian group with (+). 
• F \ {0}, forms an abelian group with (×). 

• Distributive: For ∀ x, y, z ∈  F, so                       
x × (y + z) = (x × y) + (x × z)                               
(x + y) × z = (x × z) + (y × z) 

The order of the finite field is the number of elements in 
the field. 

GF(2m) finite field is the binary finite field where can be 
observed m-dimension vector space over GF(2). So, an 
element a of the finite field is represented as m-bit binary 
vector, (am – 1am – 2. . . . a1a0) where ai ∈  {0, 1}. It is 
commonly used bases in GF(2m) are polynomial and 
normal basis. 

In polynomial basis representation, each finite field 
element corresponds polynomials whose degree is less 
than m with binary coefficients.  

a = am – 1xm - 1 + am – 2xm - 2 +. . . .+ a1x + a0,   ai ∈  {0, 1} 

a ∈  GF(2m) is always denoted as (am – 1am – 2. . . . a1a0). 
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. . , m – 1, is defined in GF(2) with degree m. If f(x) can 
not written as two other polynomials product in the same 
field, then it is irreducible and called reduction 
polynomial.  

Let a = (am – 1am – 2. . . . a1a0), b = (bm – 1bm – 2. . . . b1b0) ∈  
GF(2m) and f(x) be reduction polynomial, then the field 
operations are: 

• Addition: a + b = c = (cm – 1cm – 2. . . . c1c0),         
ci = ai + bi (mod 2). That is, addition in GF(2m) 
using polynomial basis is bitwise EXOR. 

• Multiplication: a × b = c = (cm – 1cm – 2. . . . c1c0), 
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• Inverse: Inverse of an element can be computed 
using Extented Euclid Algorithm. 



The normal basis defined on GF(2m) is 
{

1242 , . . . ,,,
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a ∈  GF(2m) is always denoted as (am – 1am – 2. . . . a1a0). 
Squaring an element of GF(2m) with normal basis 
representation is only a rotate operation of binary vector. 
So, it can implement in hardware easily. Although 
squaring is very simple, multiplication is a bit hard in 
normal basis representation. But, for a group of normal 
bases, Gaussian Normal Bases (GNB), multiplication can 
be realised efficiently. Type T of a GNB is a positive 
number that is the complexity indicator of multiplication. 
The value of T increases, then the complexity of 
multiplication increases. Type I and type II GNBs are 
called optimal normal bases.  

Let a = (am – 1am – 2. . . . a1a0), b = (bm – 1bm – 2. . . . b1b0) ∈  
GF(2m) then the field operations in a type T GNB are: 

• Addition: a + b = c = (cm – 1cm – 2. . . . c1c0),         
ci = ai + bi (mod 2). That is, addition in GF(2m) 
using normal basis is bitwise EXOR. 
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Squaring a finite field element corresponds a 
cyclic shift in vector representation. 

• Multiplication: Let p = Tm + 1 and u ∈ GF(p) 
and the order of u mod p is T. F(1),F(2),. . . . ., 
F(p - 1) sequence is defined as follows:[2] 

 F(2iuj mod p) = i, 0 ≤ i ≤ m - 1, 0 ≤ j ≤ T-1 

For ∀ l, 0 ≤ l ≤ m – 1, Al and Bl is defined as 
follows: 
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a × b = c = (cm – 1cm – 2. . . . c1c0), ∀ l, 0 ≤ l ≤ m –1, 

All indices are reduced mod m. 

 

• Inverse: For any a ∈  GF(2m) satisfies the equation 
m

a 2 = a. Then, a-1 = 22 −m

a  and 2m – 2 = 2 + 22 + 23 + . . . 
+ 2m – 1  so, a-1 is computed as follows:[3] 
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It can be computed as the sequence of operations rotation 
and multiplication. 

 
III. FINITE FIELD ELLIPTIC CURVES 

An elliptic curve equation is in general given as follows;  

y2 + a1xy + a3y = x3 + a2x2 +a4x + a6 

In figure 1 an elliptic curve in the field of real numbers is 
given. With the set of points (x, y) in the curve and an 
operation defined over this set a group can be constructed. 
So, this means it can be used for cryptographic 
applications.  

 

Figure 1: An Elliptic Curve Defined In Real Numbers 

The operation defined on the curve points is addition. It is 
defined as follows: 

Let P and Q are two points on the curve. The line is 
drawn through these two points. This line always 
intersects the curve at a third point [4], and then a vertical 
line through this point is drawn. The intersection point is 
the point P + Q. If the points are same, P = Q, then the 
line through this point is tangent of the point and known 
that it intersects the curve at this point twice. It is assumed 
the identity point of the group is the point at infinity, O, 
through y-axis. Elliptic curve is denoted by E(GF(2m)). 

It is hard to apply group operation graphically. But, using 
the coordinates of P and Q points, P=(x1, y1)∈  E(GF(2m))  
and Q = (x2,  y2) ∈  E(GF(2m)), P + Q = (x3, y3) can obtain 
by Weierstrass equations.[8] 

The elliptic curve equation in GF(2m) is: 

y2  + xy = x3 + ax2 + b 

where a, b ∈  GF(2m), and b ≠ 0. 
cl = { 

Al,  if T is even 

Bl,  if T is odd 



If P ≠ ±Q; 

x3 = λ2 + λ + x1 + x2 + a; y3 = λ(x1 + x3) + x3 + y1; 
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If P = Q, x1 = x2 and y1 = y2, P + P = 2P, is called point 
doubling; 

x3 = λ2 + λ + a; y3 = λ(x1 + x3) + x3 + y1; 
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If P = −Q, x1 = x2 and y1 = x2 + y2, P−P = O, Q is the 
negative of P. 

Addition of two distinct points in GF(2m) requires one 
inverse, two multiplications, one square and eight 
additions and similarly point doubling requires one 
inverse, two multiplications, one square and six additions. 
Inversing a field element is more expensive than the other 
operations and considering the number of point addition 
or point doubling in a cryptographic application it is more 
efficient to use projective coordinates where the inverse 
operation is eliminated. Only one inversion is needed for 
returning affine coordinates. 

∀ P = (X, Y, Z) point in projective coordinates 
corresponds x = X / Z, y = Y / Z in affine coordinates. So, 
projective plane is the union of (x, y) points in affine 
plane, which can be represented as (x, y, 1) in projective 
coordinates and the points where Z = 0.[5] The elliptic 
curve equation in GF(2m) can be modified as follows after 
x = X / Z,  y = Y / Z conversion. 

y2z + xyz = x3 + ax2z + bz3 

The O point is (0,1,0) in projective coordinates. The 
Weierstrass equations can be reformulated for                  
P = (x1, y1, z1) and Q = (x2, y2, z2) normalising                 
(x1 / z1, y1 / z1, 1) and (x2 / z2, y2 / z2, 1) respectively. 

Let P = (x1, y1, z1), Q = (x2, y2, z2), P + Q = (x3, y3, z3),      
P and Q ≠ O and P ≠ -Q 
If P ≠ -Q; 
x3 = AD; y3 = CD + A2(Bx2 + Ay2); z3 = A3z1z2 
A = x2z1 + x1z2; B = y2z1 + y1z2; C = A + B;  
D = A2(A + az1z2) + z1z2BC 
If P = Q; 
x3 = AB; y3 = 4

1x A + B( 2
1x  + y1z1 + A); z3 = A3 

A = x1z1 ve B = b 4
1z  + 4

1x   

Addition of two distinct points in GF(2m) using projective 
coordinates requires thirteen multiplications1, one square 
and seven additions and similarly point doubling requires 
seven multiplications, four squares and four additions. 
Inversion is eliminated, only one inversion is needed for 
returning affine coordinates when kP product is 
                                                 
1 z1 or z2 is assumed one. 

computed. Besides standard projective coordinates, there 
are other variants of conversions used. 

Let k be an integer and P is an elliptic curve point. Elliptic 
scalar kP product is k times addition of point P. This is 
the most important block used in elliptic curve 
cryptography. The order of point P is the smallest 
positive integer r satisfied rP = O.  

P is the curve point and 1 ≤ k ≤ order(P) then the elliptic 
curve scalar multiplication computations are formed as   
Q = kP = 44 344 21

  times

   . . .    
k

PPP +++   

Binary Method: It is the oldest and the simplest method 

based the binary representation of k. If ∑
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kj ∈  {0, 1}, then kP can be computed as follows: 
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This method requires l times point doubling and wk - 1 
times addition. wk is the number of non-zero bits in binary 
representation of k, called weight of k.  

This method can be optimised as follows: 

Each integer k can be represented as ∑
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kj ∈  {-1, 0, 1}. In this unique representation there is no 
consecutive non-zero digits and called non-adjacent form, 
NAF.[1] 

An l-bit number has weight approximately l/3 in NAF 
representation. Because of the negative of point P = (x, y) 
is –P = (x, -y) or –P = (x, x + y), point addition and point 
subtraction costs same.  

So, kP product can be computed as binary method using 
the NAF representation of k instead of performing 
addition or subtraction according to the sign for non-zero 
digits. 

Considering the memory storage window methods can be 
used for accelerating scalar multiplication where the 
process for a block of digits of k is performed at each 
step. 

 
IV. SECURITY of ECC 

The operation defined on elliptic curves is addition of 
curve points. Discrete Logarithm Problem (DLP) is the 
problem to find logarithms of numbers defined on a G 
group. Because the points of elliptic curves and the 
operation addition forms an abelian group, elliptic curves 
can be used in cryptography. Similarly as DLP, Elliptic 



Curve Discrete Logarithm Problem (ECDLP) is the 
problem for known P and Q points to find k, where        
kP = Q. ECDLP is more difficult to apply than DLP. 
Because, strongest algorithms that solved DLP can not be 
adapted to solve ECDLP. So, smaller parameters with 
ECC provide equal security as RSA cryptosystems. 
Firstly, the hardness of ECDLP depends on the base 
point, P. The order of the base point P should be high as 
possible. This allows more points on the curve useable. 
Also, because Pohlig and Hellman reduced ECDLP to the 
prime factors of the order of base point, it should be 
prime. Secondly, the number of points on the curve 
effects the security. It should be divisible by a high prime 
to strength security. The problem is to compute the 
number of points on the elliptic curve. At the first time, it 
can not compute strictly, mostly it was computed as 
boundaries of intermediate. In 1985 this was computed 
using Schoof’s Algorithm. This polynomial time 
algorithm is a deterministic algorithm to compute number 
of curve points. While it is the best algorithm known, it is 
so slow when the order of group becomes higher. Thirdly, 
in 1991 Menezes, Okamoto and Vanstone reduced 
ECDLP to DLP for a group of elliptic curves, 
supersingular elliptic curves. So, the curve chosen effects 
the security. While the curves were chosen randomly 
during some attacks developed, it is began to construct the 
elliptic curves of desired specifications and strong to the 
known attacks. Ideally the curve should be constructed 
after designating the properties of curve, but the best 
strategy is using Koblitz’s random choose method while 
the desired conditions are satisfied.[1,5]  
NIST (National Institute of Standards and Technology) 
recommended elliptic curves are resistant all known 
attacks and are used in cryptosystems recently.[1] 
 
V. A HARDWARE IMPLEMENTATION OF SCALAR 

MULTIPLICATION BLOCK AND APPLICATION 
While an elliptic curve application is implementing, some 
choices should be chosen due to the requirements of the 
system. Some of these are security of the system, finite 
field arithmetic methods, elliptic scalar multiplication 
methods, application platform, processor limits and 
communication limits.  

Firstly, the finite field should be chosen. GF(q) prime 
finite field is appropriate for software implementations. 
Then the finite field was chosen as binary finite field, 
GF(2m). Secondly, because the advantages for hardware 
implementations, the normal basis representation was 
used for finite field elements. The extension degree of the 
field, m was chosen 163. Because it is long enough to 
provide sufficient level of security and it is short to 
implement easily. Projective coordinates were used when 
realising elliptic curve arithmetic. So, the inversion was 
eliminated at each step of scalar multiplication. Inversion 
was performed only once to convert projective 
coordinates to affine coordinates. The NIST 

recommended elliptic curve and base point for GF(2163) 
were used. 

The elliptic curve scalar multiplication block was 
designed and described in VHDL. The diagram of the 
block is given in the following.  

 

Figure 2: The Diagram of Scalar Multiplication Block 

Firstly, an ALU (Arithmetic Logic Unit) was designed for 
implementing finite field arithmetic when normal basis 
representation is used. ecc_add block gets the elliptic 
curve points as input and gives the addition of two points 
as output. Similarly, ecc_double block was used to realise 
point doubling. ecc_mul block was the control block for 
scalar multiplication. It controls whether point addition or 
point doubling is needed due to the bits of k. The block 
converts affine coordinates in its input to projective 
coordinates2. 

The most important block used in elliptic curve 
cryptography is the scalar multiplication block. After 
designing this block, simple elliptic curve cryptography 
protocols may implement in an integrated circuit. At this 
time, message representation is important in the 
application. There are two methods for message 
representation, imbedding and masking. Imbedding is 
converting the message into curve points. So, there should 
be fast algorithms to convert message to point and point 
to message. The message space is restricted to the number 
of curve points. Masking is the method to represent 
message as finite field elements. Masking does not need 
to convert message, therefore it is applicable directly. 
Altogether, the securities of these two methods depend on 
ECDLP, their securities may be assumed equal. A simple 
Elliptic Curve El Gamal Protocol needs the steps below. 
Because of its easiness masking was used when 
implementing this protocol.  

Let the receiver B parameters are (q, FR, a, b, P, n, h) 
where q represents the finite field, FR represents the 
method used for field element representation, a and b are 
elliptic curve equation coefficients, P is the base point and 
n is the order of base point. h is the number where n times 
h results the number of points in the elliptic curve. QB is 
the public key and dB is the secret key of B. The sender A 
has authentic copies of the receiver’s parameters and the 
                                                 
2 Pz input is (111....111) as one when using normal basis 
representation. 



public key QB. The message m is represented as a pair of 
field elements, (M1, M2) ∈  GF(2m). 

The sender A does the following to encrypt the message 
m.[11] 

1. Random integer k is selected in the interval [1,n - 1]. 
2. kQB = ( yx  , ) is computed, x  ≠ 0 and y  ≠ 0 is                    

checked. 
3. kP = (x, y) is computed. 
4. M1 x  and M2 y  is computed. 

5. kP = (x, y), M1 x  and M2 y  is sent to the receiver B. 
The receiver B does the following to decrypt the cipher 
(kP,(M1 x ,M2 y )). 

6. dB(kP) = kQB = ( yx  , )  is computed. 

7. M1 = M1 x ( x )-1 and M2 = M2 y  ( y )-1 is computed. 

In this protocol, if M1 is known then M2 or if M2 is known 
then M1 can find easily. Only (kP, M1 x ) may send to 
prevent this. 

Also, four field elements are sent for two field elements. 
This is called message expansion. The message expansion 
factor is 2 in this protocol. This factor can be reduced to 
3/2 by sending only the coordinate x and 1 bit for the y 
coordinate instead of kP = (x, y). Receiver can recover y 
by using the elliptic curve equation.  

Because of the higher number of inputs and outputs, 
communication with computer is performed by RS232 
protocol. Because the elliptic curve parameters a and b 
are constant in the application and considering only the 
scalar key and the elliptic curve point are altered, the k 
input and the (x, y) coordinate are loaded at each elliptic 
scalar multiplication step over the serial port.  

 
VI. CONCLUSION 

Elliptic curve cryptography provides equal security level 
with smaller parameters to the other known public key 
crytosystems. So, when higher process speeds, power 
dissipation and lower storage are needed, elliptic curve 
cryptography may be chosen. Also, its security could not 
be proven exactly like other public key cryptosystems and 
the level is designated as attacks not discovered. Because 
these attacks appear a bit time later, it is important to 
develop another alternative.[4] 

In this study, the finite field GF(2m) and most popular 
bases used in this field are examined. Elliptic curves for 
crtyptographic usage of this field and security issues of 
elliptic curve cryptography are given. Also, scalar 
multiplication block which is the most important and the 
most time consuming block used in elliptic curve 
protocols is designed and this block is described with 

VHDL3. The block designed is programmed with FPGA 
and a simple El Gamal elliptic curve protocol application 
is implemented. 
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3 The VHDL codes can be requested from 
serkan@ehb.itu.edu.tr 


