
AN IMPLEMENTATION OF ELLIPTIC CURVE CRYPTOGRAPHY
SCALAR MULTIPLICATION BLOCK IN GF(2m) WITH VHDL

Serkan Acar

serkan@ehb.itu.edu.tr

Ece Olcay Güneş

ece.gunes@itu.edu.tr

Abstract—In this study, the finite field GF(2m) used in elliptic
curve cryptography and their properties, elliptic curves for this
usage, safety of elliptic curve cryptography are examined.
Also, scalar multiplication block which is the most important
and the most time consuming block used in elliptic curve
cryptography protocols is designed and this block is described
with VHDL. The block designed is programmed with FPGA
and a simple El Gamal elliptic curve protocol is implemented
with constituting computer interface.

I. INTRODUCTION
Elliptic curve cryptography (ECC) is developed
alternatively RSA and DSA public key cryptosystems by
Victor Miller and Neal Koblitz in 1985. The security of
elliptic curve cryptography depends on discrete logarithm
problem defined on an appropriate elliptic curve. The
elliptic curve discrete logarithm problem can still not be
solved in sub-exponential time. And so, this means
elliptic curve cryptography provides equal security as
RSA and DSA cryptography with smaller parameters.
Working with smaller parameters is ideal for mobile
phones or smart cards which requires high processing
speed, power dissipation and smaller memory storage.
Furthermore, there are many options for implementing
elliptic curve cryptography, because implementation of
elliptic curve cryptography is dependent on underlying
finite field, algorithms for finite field arithmetic, elliptic
curve and algorithms for elliptic curve arithmetic
chosen.[1]

II. FINITE FIELDS

<G,*> algebraic structure, where G is a set and * is a
binary operation, forms a group and satisfies the
following axioms.

• Closure: For ∀ x, y ∈ G, so x * y ∈ G
• Associativity: For ∀ x, y, z ∈ G, so (x * y) * z =

x * (y * z) ∈ G
• Identity: For ∀ x ∈ G, so e ∈ G is the identity

element provides x * e = e * x = x
• Inverse: For ∀ x ∈ G, so y ∈ G is the inverse

of x provides x * y = y * x = e
If the * operation is abelian then the group is called an
abelian group.
Let (+) and (×) are two binary operations defined over the
set F. If the following axioms are satisfied then F is called
a finite field.

• F forms an abelian group with (+).
• F \ {0}, forms an abelian group with (×).

• Distributive: For ∀ x, y, z ∈ F, so
x × (y + z) = (x × y) + (x × z)
(x + y) × z = (x × z) + (y × z)

The order of the finite field is the number of elements in
the field.

GF(2m) finite field is the binary finite field where can be
observed m-dimension vector space over GF(2). So, an
element a of the finite field is represented as m-bit binary
vector, (am – 1am – 2. . . . a1a0) where ai ∈ {0, 1}. It is
commonly used bases in GF(2m) are polynomial and
normal basis.

In polynomial basis representation, each finite field
element corresponds polynomials whose degree is less
than m with binary coefficients.

a = am – 1xm - 1 + am – 2xm - 2 +. . . .+ a1x + a0, ai ∈ {0, 1}

a ∈ GF(2m) is always denoted as (am – 1am – 2. . . . a1a0).

Let ∑
−

=

+=
1

0
,.)(

m

i

i
i

m xfxxf fi ∈ {0, 1} and i = 0, 1, 2, .

. . , m – 1, is defined in GF(2) with degree m. If f(x) can
not written as two other polynomials product in the same
field, then it is irreducible and called reduction
polynomial.

Let a = (am – 1am – 2. . . . a1a0), b = (bm – 1bm – 2. . . . b1b0) ∈
GF(2m) and f(x) be reduction polynomial, then the field
operations are:

• Addition: a + b = c = (cm – 1cm – 2. . . . c1c0),
ci = ai + bi (mod 2). That is, addition in GF(2m)
using polynomial basis is bitwise EXOR.

• Multiplication: a × b = c = (cm – 1cm – 2. . . . c1c0),
1

0
() . ,

m
i

i
i

c x c x
−

=

= ∑ is the remainder of product

(∑
−

=

1

0
.

m

i

i
i xa)(∑

−

=

1

0
.

m

i

i
i xb) divided by f(x).

• Inverse: Inverse of an element can be computed
using Extented Euclid Algorithm.

The normal basis defined on GF(2m) is
{

1242 , . . . ,,,
−m

ββββ } where β ∈ GF(2m). ∀ a ∈
GF(2m) is represented as,

1
2

0
. ,

i
m

i
i

a a β
−

=

= ∑ ai ∈ {0, 1}

a ∈ GF(2m) is always denoted as (am – 1am – 2. . . . a1a0).
Squaring an element of GF(2m) with normal basis
representation is only a rotate operation of binary vector.
So, it can implement in hardware easily. Although
squaring is very simple, multiplication is a bit hard in
normal basis representation. But, for a group of normal
bases, Gaussian Normal Bases (GNB), multiplication can
be realised efficiently. Type T of a GNB is a positive
number that is the complexity indicator of multiplication.
The value of T increases, then the complexity of
multiplication increases. Type I and type II GNBs are
called optimal normal bases.

Let a = (am – 1am – 2. . . . a1a0), b = (bm – 1bm – 2. . . . b1b0) ∈
GF(2m) then the field operations in a type T GNB are:

• Addition: a + b = c = (cm – 1cm – 2. . . . c1c0),
ci = ai + bi (mod 2). That is, addition in GF(2m)
using normal basis is bitwise EXOR.

• Square: ∑∑
−

=

−

=

+

==
1

0

2
1

0

222 1

)(
m

i
i

m

i
i

ii

aaa ββ =

∑
−

=
−

1

0

2
mod1

m

i
mi

i

a β = (am–2am–3. . . . a1a0am–1)

Squaring a finite field element corresponds a
cyclic shift in vector representation.

• Multiplication: Let p = Tm + 1 and u ∈ GF(p)
and the order of u mod p is T. F(1),F(2),.,
F(p - 1) sequence is defined as follows:[2]

 F(2iuj mod p) = i, 0 ≤ i ≤ m - 1, 0 ≤ j ≤ T-1

For ∀ l, 0 ≤ l ≤ m – 1, Al and Bl is defined as
follows:

Al = ∑
−

=
+++

2

1
)(1)(

p

k
lk-pFlkF ba

and

Bl = l-lk-lkm/

m/

k
-lkm/-lk Ababa ++ +++

=
+++∑)(112

2

1
121

a × b = c = (cm – 1cm – 2. . . . c1c0), ∀ l, 0 ≤ l ≤ m –1,

All indices are reduced mod m.

• Inverse: For any a ∈ GF(2m) satisfies the equation
m

a 2 = a. Then, a-1 = 22 −m

a and 2m – 2 = 2 + 22 + 23 + . . .
+ 2m – 1 so, a-1 is computed as follows:[3]

)(. . .).).().((
132 2222-1 −

=
m

aaaaa
It can be computed as the sequence of operations rotation
and multiplication.

III. FINITE FIELD ELLIPTIC CURVES

An elliptic curve equation is in general given as follows;

y2 + a1xy + a3y = x3 + a2x2 +a4x + a6

In figure 1 an elliptic curve in the field of real numbers is
given. With the set of points (x, y) in the curve and an
operation defined over this set a group can be constructed.
So, this means it can be used for cryptographic
applications.

Figure 1: An Elliptic Curve Defined In Real Numbers

The operation defined on the curve points is addition. It is
defined as follows:

Let P and Q are two points on the curve. The line is
drawn through these two points. This line always
intersects the curve at a third point [4], and then a vertical
line through this point is drawn. The intersection point is
the point P + Q. If the points are same, P = Q, then the
line through this point is tangent of the point and known
that it intersects the curve at this point twice. It is assumed
the identity point of the group is the point at infinity, O,
through y-axis. Elliptic curve is denoted by E(GF(2m)).

It is hard to apply group operation graphically. But, using
the coordinates of P and Q points, P=(x1, y1)∈ E(GF(2m))
and Q = (x2, y2) ∈ E(GF(2m)), P + Q = (x3, y3) can obtain
by Weierstrass equations.[8]

The elliptic curve equation in GF(2m) is:

y2 + xy = x3 + ax2 + b

where a, b ∈ GF(2m), and b ≠ 0.
cl = {

Al, if T is even

Bl, if T is odd

If P ≠ ±Q;

x3 = λ2 + λ + x1 + x2 + a; y3 = λ(x1 + x3) + x3 + y1;

12

12 λ
xx
yy

+
+

=

If P = Q, x1 = x2 and y1 = y2, P + P = 2P, is called point
doubling;

x3 = λ2 + λ + a; y3 = λ(x1 + x3) + x3 + y1;
1

1
1 λ

x
y

x +=

If P = −Q, x1 = x2 and y1 = x2 + y2, P−P = O, Q is the
negative of P.

Addition of two distinct points in GF(2m) requires one
inverse, two multiplications, one square and eight
additions and similarly point doubling requires one
inverse, two multiplications, one square and six additions.
Inversing a field element is more expensive than the other
operations and considering the number of point addition
or point doubling in a cryptographic application it is more
efficient to use projective coordinates where the inverse
operation is eliminated. Only one inversion is needed for
returning affine coordinates.

∀ P = (X, Y, Z) point in projective coordinates
corresponds x = X / Z, y = Y / Z in affine coordinates. So,
projective plane is the union of (x, y) points in affine
plane, which can be represented as (x, y, 1) in projective
coordinates and the points where Z = 0.[5] The elliptic
curve equation in GF(2m) can be modified as follows after
x = X / Z, y = Y / Z conversion.

y2z + xyz = x3 + ax2z + bz3

The O point is (0,1,0) in projective coordinates. The
Weierstrass equations can be reformulated for
P = (x1, y1, z1) and Q = (x2, y2, z2) normalising
(x1 / z1, y1 / z1, 1) and (x2 / z2, y2 / z2, 1) respectively.

Let P = (x1, y1, z1), Q = (x2, y2, z2), P + Q = (x3, y3, z3),
P and Q ≠ O and P ≠ -Q
If P ≠ -Q;
x3 = AD; y3 = CD + A2(Bx2 + Ay2); z3 = A3z1z2
A = x2z1 + x1z2; B = y2z1 + y1z2; C = A + B;
D = A2(A + az1z2) + z1z2BC
If P = Q;
x3 = AB; y3 = 4

1x A + B(2
1x + y1z1 + A); z3 = A3

A = x1z1 ve B = b 4
1z + 4

1x

Addition of two distinct points in GF(2m) using projective
coordinates requires thirteen multiplications1, one square
and seven additions and similarly point doubling requires
seven multiplications, four squares and four additions.
Inversion is eliminated, only one inversion is needed for
returning affine coordinates when kP product is

1 z1 or z2 is assumed one.

computed. Besides standard projective coordinates, there
are other variants of conversions used.

Let k be an integer and P is an elliptic curve point. Elliptic
scalar kP product is k times addition of point P. This is
the most important block used in elliptic curve
cryptography. The order of point P is the smallest
positive integer r satisfied rP = O.

P is the curve point and 1 ≤ k ≤ order(P) then the elliptic
curve scalar multiplication computations are formed as
Q = kP = 44 344 21

 times

 . . .
k

PPP +++

Binary Method: It is the oldest and the simplest method

based the binary representation of k. If ∑
−

=

=
1

0
2

l

j

j
jkk ,

kj ∈ {0, 1}, then kP can be computed as follows:

kP = ∑
−

=

1

0
2

l

j

j
j Pk = 2(...2(2kl – 1P + kl – 2P) +...) + k0P

This method requires l times point doubling and wk - 1
times addition. wk is the number of non-zero bits in binary
representation of k, called weight of k.

This method can be optimised as follows:

Each integer k can be represented as ∑
−

=

=
1

0

2
l

j

j
jkk ,

kj ∈ {-1, 0, 1}. In this unique representation there is no
consecutive non-zero digits and called non-adjacent form,
NAF.[1]

An l-bit number has weight approximately l/3 in NAF
representation. Because of the negative of point P = (x, y)
is –P = (x, -y) or –P = (x, x + y), point addition and point
subtraction costs same.

So, kP product can be computed as binary method using
the NAF representation of k instead of performing
addition or subtraction according to the sign for non-zero
digits.

Considering the memory storage window methods can be
used for accelerating scalar multiplication where the
process for a block of digits of k is performed at each
step.

IV. SECURITY of ECC

The operation defined on elliptic curves is addition of
curve points. Discrete Logarithm Problem (DLP) is the
problem to find logarithms of numbers defined on a G
group. Because the points of elliptic curves and the
operation addition forms an abelian group, elliptic curves
can be used in cryptography. Similarly as DLP, Elliptic

Curve Discrete Logarithm Problem (ECDLP) is the
problem for known P and Q points to find k, where
kP = Q. ECDLP is more difficult to apply than DLP.
Because, strongest algorithms that solved DLP can not be
adapted to solve ECDLP. So, smaller parameters with
ECC provide equal security as RSA cryptosystems.
Firstly, the hardness of ECDLP depends on the base
point, P. The order of the base point P should be high as
possible. This allows more points on the curve useable.
Also, because Pohlig and Hellman reduced ECDLP to the
prime factors of the order of base point, it should be
prime. Secondly, the number of points on the curve
effects the security. It should be divisible by a high prime
to strength security. The problem is to compute the
number of points on the elliptic curve. At the first time, it
can not compute strictly, mostly it was computed as
boundaries of intermediate. In 1985 this was computed
using Schoof’s Algorithm. This polynomial time
algorithm is a deterministic algorithm to compute number
of curve points. While it is the best algorithm known, it is
so slow when the order of group becomes higher. Thirdly,
in 1991 Menezes, Okamoto and Vanstone reduced
ECDLP to DLP for a group of elliptic curves,
supersingular elliptic curves. So, the curve chosen effects
the security. While the curves were chosen randomly
during some attacks developed, it is began to construct the
elliptic curves of desired specifications and strong to the
known attacks. Ideally the curve should be constructed
after designating the properties of curve, but the best
strategy is using Koblitz’s random choose method while
the desired conditions are satisfied.[1,5]
NIST (National Institute of Standards and Technology)
recommended elliptic curves are resistant all known
attacks and are used in cryptosystems recently.[1]

V. A HARDWARE IMPLEMENTATION OF SCALAR

MULTIPLICATION BLOCK AND APPLICATION
While an elliptic curve application is implementing, some
choices should be chosen due to the requirements of the
system. Some of these are security of the system, finite
field arithmetic methods, elliptic scalar multiplication
methods, application platform, processor limits and
communication limits.

Firstly, the finite field should be chosen. GF(q) prime
finite field is appropriate for software implementations.
Then the finite field was chosen as binary finite field,
GF(2m). Secondly, because the advantages for hardware
implementations, the normal basis representation was
used for finite field elements. The extension degree of the
field, m was chosen 163. Because it is long enough to
provide sufficient level of security and it is short to
implement easily. Projective coordinates were used when
realising elliptic curve arithmetic. So, the inversion was
eliminated at each step of scalar multiplication. Inversion
was performed only once to convert projective
coordinates to affine coordinates. The NIST

recommended elliptic curve and base point for GF(2163)
were used.

The elliptic curve scalar multiplication block was
designed and described in VHDL. The diagram of the
block is given in the following.

Figure 2: The Diagram of Scalar Multiplication Block

Firstly, an ALU (Arithmetic Logic Unit) was designed for
implementing finite field arithmetic when normal basis
representation is used. ecc_add block gets the elliptic
curve points as input and gives the addition of two points
as output. Similarly, ecc_double block was used to realise
point doubling. ecc_mul block was the control block for
scalar multiplication. It controls whether point addition or
point doubling is needed due to the bits of k. The block
converts affine coordinates in its input to projective
coordinates2.

The most important block used in elliptic curve
cryptography is the scalar multiplication block. After
designing this block, simple elliptic curve cryptography
protocols may implement in an integrated circuit. At this
time, message representation is important in the
application. There are two methods for message
representation, imbedding and masking. Imbedding is
converting the message into curve points. So, there should
be fast algorithms to convert message to point and point
to message. The message space is restricted to the number
of curve points. Masking is the method to represent
message as finite field elements. Masking does not need
to convert message, therefore it is applicable directly.
Altogether, the securities of these two methods depend on
ECDLP, their securities may be assumed equal. A simple
Elliptic Curve El Gamal Protocol needs the steps below.
Because of its easiness masking was used when
implementing this protocol.

Let the receiver B parameters are (q, FR, a, b, P, n, h)
where q represents the finite field, FR represents the
method used for field element representation, a and b are
elliptic curve equation coefficients, P is the base point and
n is the order of base point. h is the number where n times
h results the number of points in the elliptic curve. QB is
the public key and dB is the secret key of B. The sender A
has authentic copies of the receiver’s parameters and the

2 Pz input is (111....111) as one when using normal basis
representation.

public key QB. The message m is represented as a pair of
field elements, (M1, M2) ∈ GF(2m).

The sender A does the following to encrypt the message
m.[11]

1. Random integer k is selected in the interval [1,n - 1].
2. kQB = (yx ,) is computed, x ≠ 0 and y ≠ 0 is

checked.
3. kP = (x, y) is computed.
4. M1 x and M2 y is computed.

5. kP = (x, y), M1 x and M2 y is sent to the receiver B.
The receiver B does the following to decrypt the cipher
(kP,(M1 x ,M2 y)).

6. dB(kP) = kQB = (yx ,) is computed.

7. M1 = M1 x (x)-1 and M2 = M2 y (y)-1 is computed.

In this protocol, if M1 is known then M2 or if M2 is known
then M1 can find easily. Only (kP, M1 x) may send to
prevent this.

Also, four field elements are sent for two field elements.
This is called message expansion. The message expansion
factor is 2 in this protocol. This factor can be reduced to
3/2 by sending only the coordinate x and 1 bit for the y
coordinate instead of kP = (x, y). Receiver can recover y
by using the elliptic curve equation.

Because of the higher number of inputs and outputs,
communication with computer is performed by RS232
protocol. Because the elliptic curve parameters a and b
are constant in the application and considering only the
scalar key and the elliptic curve point are altered, the k
input and the (x, y) coordinate are loaded at each elliptic
scalar multiplication step over the serial port.

VI. CONCLUSION

Elliptic curve cryptography provides equal security level
with smaller parameters to the other known public key
crytosystems. So, when higher process speeds, power
dissipation and lower storage are needed, elliptic curve
cryptography may be chosen. Also, its security could not
be proven exactly like other public key cryptosystems and
the level is designated as attacks not discovered. Because
these attacks appear a bit time later, it is important to
develop another alternative.[4]

In this study, the finite field GF(2m) and most popular
bases used in this field are examined. Elliptic curves for
crtyptographic usage of this field and security issues of
elliptic curve cryptography are given. Also, scalar
multiplication block which is the most important and the
most time consuming block used in elliptic curve
protocols is designed and this block is described with

VHDL3. The block designed is programmed with FPGA
and a simple El Gamal elliptic curve protocol application
is implemented.

REFERENCES

[1] Lopez, J. and Dahab, R., 2000. An Overview of
Elliptic Curve Cryptography, Institute of Computing,
State University of Campinas, Brazil, May 22

[2] P1363, 2000. Standard Specifications for Public Key
Cryptography, IEEE, New York

[3] Wang, C.C., Truong, T.K., Shao, H.M., Deutsch, L.J.,
Omura, J.K. and Reed, I.S., 1985. VLSI
Architectures for Computing Multiplications and
Inverses in GF(2m), IEEE Transactions on
Computers, 34, 709-717

[4] De Win, Erik and Preneel, B., 1997. Elliptic Curve
Public Key Cryptosystems – an introduction, State of
the Art in Applied Cryptography, 131-141

[5] Mugino, S., 1997. Elliptic Curve Cryptosystems,
Msc. Thesis, McGill University, Montreal

[6] Jurisic, A. and Menezes, A.J., 1997. Elliptic Curves
and Cryptography, Dr. Dobb’s Journal, 23-36

[7] Araki, K., Satoh, T. and Miura, S., 1998. Overview of
Elliptic Curve Cryptography, Proc. of Public Key
Cryptography, 19-48

[8] Agnew, G. B., Mullin, R.C. and Vanstone, S.A.,
1993. An Implementation of Elliptic Curve
Cryptosystems Over 1552

F , IEEE Journal on
Selected Areas in Communication, 11, 804-813

[9] Lopez, J. and Dahab, R., 1998. Improved Algorithms
for Elliptic Curve Arithmetic in GF(2n), Selected
Areas in Cryptography, 201-212

[10] Hankerson, D., Hernandez, J.L. and Menezes, A.,
2000. Software Implementation of Elliptic Curve
Cryptography Over Binary Fields, Cryptographic
Hardware and Embedded Systems, 1-24

[11] Menezes, A., 1993. Elliptic Curve Public Key
Cryptosystems, Kluwer Academic Publishers, United
States of America

3 The VHDL codes can be requested from
serkan@ehb.itu.edu.tr

