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Abstract 
 
The paper implements a monogenic-Local Binary Pattern 
(mono-LBP) algorithm on a local Gabor Pattern (LGP). The 
algorithm is applied at different scales of the Gabor kernel 
with different normalization schemes. Results from the two 
best performing normalization algorithms with mono-LBP 
are fused at score level to obtain an improved performance. 
Moreover, performance comparison is done with other 
variants of LGP algorithm and also the effects of various 
normalization techniques are investigated. Experimental 
results on JAFFE facial expression database show that the 
new technique has the best average performance of 93% 
compared to its counterparts using distance metrics as a 
classifier. 
 
          Keywords— Facial Expression Recognition, Local Gabor 
Patterns, monogenic Local Binary Patterns, Local Binary 
pattern. 
 

1. Introduction 
 
Facial Expression Recognition (FER) has been one of the 

areas which have drawn a lot of interests and attentions of the 
researchers in the field of computer vision and pattern 
recognition. This may not be unconnected to the need for 
human-machine interaction (HMI), surveillance systems, 
robotics applications and many others. Quiet a handful number 
of feature extraction and classifier algorithms have been 
proposed and implemented for this task (FER). Gabor kernel has 
being one of the most robust feature extraction algorithm and 
widely exploited in FER and face recognition due to its ability to 
approximate receptive fields of simple cells in the primary  
visual cortex of human eyes [1] , multi-resolution approach and 
direction selectivity.  

Following successful implementation of Gabor kernels in iris 
recognition by Doughman [2] and coupled with the success of 
local binary pattern (LBP) algorithm, a number of variants of 
Gabor algorithms emerged over time. These Gabor variants are 
sometimes referred to Local Gabor Patterns (LGP). LGP 
algorithms exploited various Gabor feature channels such as 
magnitude, phase, imaginary and real channels. For instance, [3] 
proposes Local Gabor Binary Patterns (LGBP) which encodes 
Gabor magnitude with LBP operator at different resolution and 
orientations to form the feature vector. The proposed LGBP was 
reported to have improved performance for face recognition [4]. 
Proposed Local Gabor Phase pattern (LGPP) variants and 
applied it for face recognition. LGPP essentially encodes both 
real and imaginary parts of the Gabor features using Douglas 
method and then the result is further encoded using what is 
called Local XOR Pattern (LXP). In search for robustness and 
improved performance, other LGP were proposed such as 
Histogram of Gabor Phase Pattern (HGPP), Local Gabor Phase 

difference Pattern (LGPDP) and a host of others which are quite 
relevant to specific problems. In general, these LGP algorithms 
come with additional cost of computation, extensive memory 
usage and in most cases feature vector dimensionality reduction 
becomes necessary. 

In our work, we borrowed a rotation invariant monogenic 
LBP proposed in [4] for texture classification. Instead of 
encoding the Gabor magnitude channels with LBP as is the case 
in (LGBP), we encoded these channels with monogenic LBP 
which, within the context of this work, we referred to mono-
LGBP. Furthermore, the results are computed at different 
resolution (scales) of the Gabor kernel under different 
normalization algorithms. At each scale, results of the proposed 
method with the best two performing normalization technique 
are fused at the score level to obtain the overall performance of 
the method. 

The paper is divided into five sections. Section I covers the 
introduction while section II briefly discusses Gabor kernel, 
LBP and M-LBP. Section III introduces the normalization 
schemes used and section IV presents the experimental results. 
Section V summarizes the findings. 

 
2. LGP Feature Extraction Operators 
 

A brief literature background about the Gabor kernels and 
some of the operators used for LBP algorithms are discussed 
below.  

 
2.1. Gabor Wavelet Transform 

 
        Gabor filter is basically a modulation of a Gaussian 
function with a sinusoidal plane wave. Therefore the result of 
convolution of Gabor kernel, ߰ఓ,௩ሺݖሻ with an image, I(z)  is 
represented as  ܩఓ,௩ሺݖሻ  in Eqn. 1. 
ሻݖఓ,௩ሺܩ  ൌ ሻݖሺܫ כ ߰ఓ,௩ሺݖሻ,       (1) 
 
       Here, z = (x, y) which is the 2D pixel’s index along x and y 
plane and operator ‘* ‘ is the 2D convolution operator. µ and v 
are the orientation and the scales of the kernel, respectively. The 
kernel is defined as: 
 ߰ఓ,௩ሺݖሻ ൌ ฮ௞ഋ,ೡฮఙమ ݁ቆିฮೖഋ,ೡฮమԡ೥ԡమమ഑మ ቇ ቂ݁ି௜௞ഋ,ೡ௭ െ ݁ିఙమ ଶൗ ቃ ,                 (2) 
  
where  ԡ. ԡ is the norm operator and σ is the standard deviation 
of the distribution. The vector ݇ఓ,௩ is defined as: 
 ݇ఓ,௩ ൌ ݇௩݁ି௜థಔ                                              (3)  
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where ݇௩ ൌ ݇௠௔௫/݂௩  and  ߶ஜ ൌ ௠௔௫݇ ; 8/ߤߨ  is the maximum 
frequency, ߶ஜ  is the kernel’s orientation and ݂  is the spacing 
between the kernels in the frequency domain [4]-[6]. 
 
2.2. Local Binary Pattern 
 
   Due to its relative simplicity, LBP has been applied 
successfully in many applications. The algorithm uses 3 ൈ 3 
windows of neighborhood pixels in the image to determine the 
new value of a pixel being considered [7]-[9]. Consider Fig.1, 
initially the algorithms probes all the 8-neighbood pixels around 
pixel I(z), any pixel greater than I(z) is assigned a binary bit 
value 1 while those whose values are less than or equals to I(z) 
are assigned bit value 0. 8-bit code is generated and is converted 
to decimal as the new value for I(z). The operation is applied to 
all the pixels in the image. 
 

 
     
                      
 
 
  

Fig. 1.   LBP operator 

    The LBP code for pixel I(z) can be computed by arranging the 
results of the operation starting from  top-left corner clockwise 
is ‘01011000’ which is equivalent to 152 in decimal. 
 
 
2.3. Local Binary XOR Operator 
          
      LXP is very similar to LBP except that it applies XOR to  3 ൈ 3  pixels neighborhood to decide the new value of a pixel. 
Due to the fact that it applies XOR operator the pixels values 
must be converted to zeros and ones before being applied 
[10,11]. For instance results from an image convolved with 
Gabor kernel may be formatted to logical by deciding that any 
value greater than zero is assigned a logical zeros while those 
with zeros and below are assigned logical ones. Fig. 2 shows 
how LXP is applied to the logically formatted image. For the 
new value of I(z) is to be determined, all the 8-neighborhood 
pixels are XOR-ed with I(z) and the resulting 8 bit codes are 
converted to decimal. 
 

 
 
 
 
 

Fig. 2.  XLP operator 
 

    For instance, in the figure above the new LXP code for pixel 
I(z) starting  from top-left corner clockwise is ‘00111011’ which 
is equivalent to 115 in decimal. 
 
2.4. Monogenic Local Binary Pattern 
 
        The motivation for this algorithm comes from the 
monogenic signal theory. It combines the local phase 
information, the local surface type information, and the 
traditional LBP to improve the performance of LBP in texture 

classification [4]. Based on this theory, three features are 
combined together to form monogenic 3-D texton feature vector 
to determine monogenic LBP. These features are; phase, ߮௖, 
rotation invariant uniform pattern LBP, LBPriu2 and the 
monogenic curvature tensor Sc based on higher order Riesz 
transforms. Eqn. 4-6 describe these features. For more details 
refer to [4]. 
ܤܮ  ௉ܲ,ோ௥௜௨ଶ ൌ ቊ∑ ሺ݃௣௣௣ୀ଴ݏ െ ௖݂ሻ  ݂݅ ܷሺܤܮ ௣ܲ,௥ሻ ൑ 2,ܲ ൅ 1,  (4)                  ,݁ݏ݅ݓݎ݄݁ݐ݋              

 
where;  
 
 ܷ൫ܤܮ ௣ܲ,௥൯ ൌ หݏ൫݃௣ିଵ െ ݃௖൯ െ ሺ݃௢ݏ െ ݃௖ሻห                                ൅ ∑ หݏ൫݃௣ െ ݃௖൯ െ ൫݃௣ିଵݏ െ ݃௖൯ห௉ିଵ௣ୀଵ            (5) 
 
     Superscript “riu2” means the use of rotation invariant 
“uniform” patterns that have U value of at most 2; s is the sign 
function; gc corresponds to the gray value of the center pixel of 
the local neighborhood and gp (p= 0,…, P-1) correspond to the 
gray values of P equally spaced pixels on a circle of radius R. 
 
Phase ߮௖, is defined as ; 
 ߮௖ ൌ ߮ ሺߨ ൗܯ ሻ൘  ,              (6)                   

 
where M=5. 
 
The last parameter Sc is defined by:  
 ܵ௖ ൌ ൜0, det ሺ ௘ܶሻ ൑ 01, ݁ݏ݈݁  ,                (7) 

   
where det( ௘ܶሻ  is the determinant of the monogenic curvature 
tensor. 
 

3. Normalization Schemes 
 

           Normalization techniques are quite often being used 
without much regards to the effect they can have on the general 
statistical distribution of the vectors to be normalized [8]-[10]. 
For instance, in fusion of the score levels of a various classifiers, 
a normalization scheme can be deploy to bring the scores within 
the same range. But in a vector sense, the normalization 
algorithm is more of a vector transform from one vector space to 
another. Hence the choice for a compatible normalizer becomes 
important as this may distort the vectors there by improving or 
decreasing the class seperability between two distinct class 
vectors [8,10]. Due to this fact, we investigated some of the 
most common normalization techniques to show how they affect 
class vectors distribution. Four normalization techniques are 
examined in this paper. 
 
3.1. Z-Score Normalization 

 
        It is one of the most common normalization schemes. It 
uses the arithmetic mean and standard deviation of the vector. Z-
score has a record of good performance on a set of data with 
Gaussian distribution. However, it is not robust due to the fact 
that it depends on the mean and standard deviation of the data 
which are both sensitive to outliers [13]. For a data point  ܵ௞,  Z-
score computes the new normalized value ܵ௞ᇱ , using Eqn. 8. 

100 240 30  0 1 0 

20 I(z)=120 185 0  1 

70 100 200 0 0 1 

1 1 0  0 0 1 

0 I(z)=1 0 1  1 

0 1 0 1 0 1 
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 ܵ௞ᇱ =ௌೖିఓఙ  ,       (8) 
 
where ߤ  and ߪ  are the mean and standard deviation of the 
distribution respectively. 
 
3.2. MIN-MAX Normalization 

 
   Is one of the simplest of all the normalization techniques. This 
operator shifts the data sets within an interval [0, 1]. It can easily 
be seen that this technique is also not robust because presence of 
outliers in the distribution may affect the contribution of the 
majority datasets. Eqn. 9 defines min-max operator. 
 ܵ௞ᇱ = ௌೖି௠௜௡௠௔௫ି௠௜௡,       (9) 
 
  where max is the maximum data value in the distribution and 
min is the minimum data value of the distribution. 
 
3.3. Median-MAD Normalization 

 
       The median and median absolute deviated as abbreviated 
(Median-MAD), are less sensitive to outliers and points at the 
extreme ends of the distribution. Therefore, this technique is 
robust. However, for distributions other than Gaussian, median 
and MAD are poor estimates of the location and the scales 
parameters [13]-[15]. Therefore, the scheme does not preserve 
the original distribution and does not transform the datasets into 
a common numerical range [13]. The equation below defines the 
median-MAD operation. 
 ܵ௞ᇱ =ௌೖି௠௘ௗ௜௔௡ெ஺஽ ,     (10) 
 
  where median is the  median of the distribution and MAD is 
the median of the absolute deviation from the median defined as ܦܣܯ ൌ ݉݁݀݅ܽ݊ሺ|ܵ௞ െ ݉݁݀݅ܽ݊|). 
 
3.4. Tangent-hyperbolic (Tanh) Normalization 

 
    Tanh normalization has been successfully used in many 
normalization schemes [14]. The tanh estimator is robust and 
very efficient. It is defined as; 
 ܵ௞ᇱ =ଵଶ ቊtanh ቆ0.01 ቀௌೖషഋಸಹఙಸಹ ቁቇ ൅ 1ቋ ,  (11) 

 
   where ீߤு  and ீߪு  are the mean and standard deviation 
estimates, respectively. 
      Quite a number of normalization schemes do exist, for 
example Decimal Scaling normalization which is useful for data 
in logarithmic scales and Euclidean normalization. The ability of 
particular normalization algorithm to capture statistical 
distribution of a dataset will make it worthwhile. 
 

4. Simulation Results 
 

     The proposed algorithm is implemented using a JAFFE 
database [5]. The database contains of 213 samples images of 
seven basic facial expressions (i.e. Neutral, Happy, Sad, 
Surprise, Anger Disgust and Fear) collected from 10 different 
subjects. To make it automatic 210 samples were used. 66.6% of 
the data were used for training and the remaining for testing.  

         The algorithm extracted the Gabor features from each 
samples at different orientation (i.e. ી=8) and from scale 1 
through 3. At each orientation and scale monogenic LBP 
approach is used to extract features for the proposed mono-
LGBP algorithm. Moreover, each mono-LGBP feature vector is 
normalized with four different normalization techniques as 
explained in section 3. Euclidean distance classifier is used to 
compute the distance metrics. The results from the two best 
performing normalization algorithm (Z-score and Tanh) with 
mono-LGBP are fused together using simple sum rule. In the 
same way three other LGP algorithms (Gabor-mag, LGBP and 
LGPP) were implemented to compare the results with the 
proposed method. Fig.3 shows training samples from JAFFE 
database of four different subjects with 7 basic facial 
expressions (e.g. Neutral, Happy, Sad, Surprise, Anger Disgust 
and Fear) from left to right accordingly. Tables 1-3 present 
simulation results using one to three of the Gabor kernel scales. 
 

 
 

Fig. 3. Examples of images from the JAFFE Database 
 
      It is worth noting that the proposed mono-LGBP  algorithm 
performance increases with the increase of Gabor scales.  The 
fused results from Z-score and Tanh normalization algorithms 
gives a better performance. This is because in mono-LGBP, 
each of the two normalization schemes has been able to 
uniquely recognize some poses which are not being recognize 
by the other. Hence, the fusion of these results will lead to 
improving performance. The same can not be said for the other 
LGP. For example, Gabor-magnitude (Gabor-mag)  has the best 
result with all the Z-score, tanh and min-max normalizations but 
unfortunately, they all pointed at the same recognition classes. 
Therefore fusing their results does not improve the performance. 
The same for LGPP and LGBP.  
      Fig. 4 shows graphical comparative of recognition 
performances of the proposed algorithm and the other 
algorithms. 
 
 

Table 1.  Experimental Results at one scale 
 

Feature 
Extractors 

Normalization Algorithms 
Non   Z-score min-max  M-MAD   tanh 

G-Mag              88.6     90.0      88.6       90.0          90.0                
LGPP                67.1     68.6      67.1        67.1         70.0 
LGBP               34.3     40.0      34.3        40.0          50.0 
mono-LGBP     64.3     64.3      57.1        57.1          67.1            
mono- GBP                Z-Score+ tanh = 77.14 
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Table 2.  Experimental Results at two scales 
 

Feature 
Extractors       

            Normalization Algorithms 
 Non  Z-score  min-max  M-MAD    tanh 

G-Mag               90       91.4        91.4         90.0        91.4 
LGPP                77.1     78.6        77.1          77.1       78.6 
LGBP               50.0     50.0         40.0          50.0       77.1 
mono-LGBP     80.0     80.0         74.3         71.4        80.0 
mono-LGBP               Z-Score+ tanh = 84.29 

 
 

Table 3.  Experimental Results at three scales 
 

Feature 
Extractors 

           Normalization Algorithms 

Non  Z-score   min-max   M-MAD   tanh 
G-Mag               90       91.4         91.4         90        91.4 
LGPP                 77.1    82.1         80.1        77.1      85.7 
LGBP                71.4    71.4         60.0        71.4       80.1 
LGBP-mono      87.1    91.4         82.9          90       91.4 
Mono-LGBP                Z-Score + tanh = 92.83 

        

Fig. 4.  Performance comparison betwwrn different algorithms. 
 
 

5. Conclusions 
 

A new approach for FER was proposed and implemented. The 
performance of the approach was compared with the existing 
LGP algorithms. The new approach was able to achieve better 
performance approximately 93% which is comparable to the 
best known results of FER on JAFFE using simple Euclidean 
classifier. The normalization scheme has also showed that it can 
influence a great deal of performance of a feature extraction 
algorithm if properly selected. 
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