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Abstract – A simple formulation procedure for first order 
linear time-invariant RC and RL networks is extended to 
formulate a second order differential equation that 
represents linear time-invariant circuits. Following this 
approach saves time and paves the way for a more formal 
introduction of state equations for the class of RLC 
networks driven by two-terminal independent voltage 
and/or current sources in the first circuits course.        
 

I. INTRODUCTION 
 
Algorithms for the formulation of state equations for 
general linear time-invariant RLC networks which may 
also contain multi-terminal components such as ideal 
transformers, gyrators and dependent (controlled) sources 
have been well established in the literature during the late 
sixties and early seventies [1]-[5]. It is well known that 
such algorithms require some basic knowledge of graph 
theory to represent the topology of the network and the 
formulation procedure usually relies heavily on matrix 
manipulations. 
 
Although these same algortihms, after some practice, can 
be applied very easily and quickly to simple RC, RL 
(first order) and RLC (second order) networks, the mere 
order of presentation of formulation, first for a class of 
networks in general, and then applying the procedure to 
simple networks, seems to be objectionable to beginning 
students as well as to some instructors1. A quick survey 
of some introductory texts on network analysis shows 
that the classical approach of starting time-domain 
formulation with simple first order networks and then 
proceeding to simple second order networks is still 
prevailing [6]-[11]. 
 
In what follows a different new algorithmic approach of 
introducing time-domain formulation in a sophomore 
level course is described and the main advantages of such 
an approach are elaborated. This approach leads naturally 
to a different basis of network classification, which is 
based upon the complexity of the topology of the 
algebraic elements in the network and not necessarily on 
the order of complexity of the differential equation (DE) 
that would be representing the network. Limited 
applications of this approach to some sophomore 
                                                 
1 Experience from teaching classes and discussions with 
colleagues  

students indicated a quicker adaptation and handling 
capability of new problems and no objection for a little 
abstraction and generalization towards the end of the 
course. 
 

II. SIMPLE RC AND RL NETWORKS 
  
These networks have a single capacitor (inductor) and 
may contain more than one resistor. Students at this stage 
are expected to know what a first order DE is and how it 
is solved. Consider a parallel (series) RC (RL) network 
driven by an independent current (voltage) source. The 
classical approach in formulation would be to start with a 
KCL (KVL) and then substitute the terminal relations, for 
the components, manipulate, and get the DE in vC (iL) 
which in this case is also the state equation for the 
network. The formulation in the new approach for the 
same network starts first with writing the terminal 
relation for the capacitor (inductor) in differential form 
and then use KCL (KVL) to eliminate the capacitor 
(inductor) current (voltage). This procedure requires that 
the terminal relations and KVL or KCL be used 
alternately (to avoid redundancy) till the DE is obtained. 
So, for the parallel RC network driven with a current 
source i we would start with; CdvC/dt = iC then using 
KCL to eliminate ic we have iC = -iR + i . To eliminate iR 
we first use the terminal relation for R obtaining; iC = -
1/R vR + i, applying KVL to eliminate vR we get; iC = -
1/R vC+ i. Putting this last relation for iC into the 
capacitor terminal equation we can get the desired DE 
which is: dvC/dt = -1/RC vC + 1/C i.  
 
When the RC (RL) network contains more than one 
resistor then a “less simple” first order network would 
result and the formulation procedure could start first with 
finding a Norton (Thevenin) equivalent of the algebraic 
part of the network and then putting C (L) into the 
equivalent circuit and then applying the formulation 
procedure described above. Note that these “less simple” 
RC (RL) networks may also contain dependent sources 
(drivers) as is usually encountered in the analysis of 
simplified electronic circuits [12][13]. 
 
 
 
 



III. SIMPLE SERIES AND PARALLEL RLC 
NETWORKS 

 
The same approach used above can also be applied to 
series and parallel RLC networks. First let us restrict the 
application to either a parallel RLC driven by an 
independent current source or to a series RLC driven by 
an independent voltage source. Considering the latter 
with an independent voltage source v and starting the 
formulation as suggested for the RC (RL) networks 
above and repeating for each energy storage element we 
will get two differential relations from which we can 
derive a second order DE in one of the variables vC or iL, 
where the derivative of the voltage source would not 
appear. To demonstrate the procedure, let us start with 
the terminal relations for C and L; CdvC/dt = iC and L 
diL/dt = vL. Using KCL (KVL) and the terminal relations 
alternately we can express iC (vL) in terms of vC, iL and v. 
Substituting into the terminal relations for C and L we 
will get: 
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Now taking the derivative of equation (3.1) and 
substituting (3.2) and (3.1) into this new equation we will 
get a second order DE in vC where the derivative of v 
does not appear. Note that for the series RLC network 
driven by an independent voltage source, vC would be the 
preferable variable to formulate the second order DE in. 
Similarly, for a parallel RLC network driven by an 
independent current source, a better choice is to 
formulate the second order DE in iL instead of vC to avoid 
the derivative of the current source appearing in the DE. 
This is not so obvious from the topology of the networks 
and should be pointed out to students.  
 
The procedure followed above establishes a simple 
algorithm for the derivation of the second order DE for 
this class of networks: 
 
a) Given an RLC network, which can be put into the 

form of a series (parallel) RLC network driven by an 
independent voltage (current) source, start the 
formulation by writing the terminal relations of both 
C and L in their differential form. 

b) Using KCL and KVL as appropriate, eliminate the 
capacitor current and inductor voltage in terms of vC, 
iL, resistor variables and independent source 
variables.  

c) Apply terminal relations and KVL (KCL) alternately 
till all variables on the right hand side of the two 
equations are capacitor voltages and/or inductor 
currents as well as independent source variables 
only. 

d) Take the derivative of one of the two equations 
above (if applicable, the one in which the 

independent source variable does not appear) and 
substitute the two equations into this new equation. 

e) After some simple manipulation put the resulting 
second order equation in the proper format. 

 
IV. LESS SIMPLE RLC OR SECOND ORDER 

NETWORKS 
 
Second order networks may also be networks that contain 
two capacitors (inductors) not forming a circuit (cutset) 
and may be driven by more than one independent source. 
The above algorithm can also be applied to such networks 
to obtain a representative second order DE. First consider 
the network shown in Fig. 4.1 where we have an RLC 
network that contains more than one independent source. 
Applying the algorithm we will first find the two 
differential relations: 

2LC
2

C iiv
R
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1L1C
L viRv

dt
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Fig. 4.1 Network with two independent sources 

 
Note that the source variables appear in both of the 
equations above. The choice of the second order DE 
variable in this case may depend upon the particular 
waveforms (if available) of the independent sources. For 
this case the choice is arbitrary and any one of the 
equations (4.1) or (4.2) can be chosen. 
Next, consider a network that has two capacitors as 
shown in Fig.4.2 below. 

 
Fig. 4.2 2nd order network with two-capacitors 

 
Starting with the capacitor terminal relations in 
differential form and eliminating the capacitor currents 
following the steps outlined in the algorithm we will get 
the following two equations: 
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The above two equations reveal that a second order DE 
in vC2 would be more advantageous when solving since 
the derivative of the source variable would not appear in 
the final DE. 
 

V. MORE INVOLVED SECOND ORDER 
NETWORKS 

 
We may encounter second order RLC networks that 
“look” simple yet they may require solving for some 
resistor variables first before the formulation procedure 
can continue. The complications would come from the 
topology of the resistors in the network. One or more 
branch (chord) resistors may define f-cutsets (f-circuits) 
in which one or more chord (branch) resistors exist. In 
such cases the simultaneous solution of some algebraic 
equations may be necessary before obtaining the two 
differential relations for the reactive components. 
 
This is perhaps the best place to introduce the idea of a 
“formulation tree” [2][4][5][14], which would be also 
very useful later when state equation formulation is 
introduced. Examining the formulation tree will show 
clearly where and how much complication will be 
encountered. To demonstrate this considers the network 
shown in Fig.5.1a and the proper formulation tree 
selected as shown in Fig.5.1b. 

 
Fig. 5.1 (a) More complicated RLC network,  (b) Network graph 

 
In Fig.5.1b above we observe that the branch (chord) 
resistor R1 (R2) defines an f-cutset (f-circuit) in which a 
chord (branch) resistor R2 (R1) exists. So, we expect that 
some algebraic equations must be solved before we can 
obtain the two differential relations for vC and iL 
explicitly in terms of vC, iL and the independent driver 
variable v1. Starting with the terminal relations for C and 
L in differential form and applying the algorithm we get: 
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Now, iR2 and vR1 must be eliminated from (5.1) and (5.2) 
respectively. Since for this example there is only one 
branch (chord) resistor defining an f-circuit (f-cutset) in 
which one chord (branch) resistor exists the elimination 
can be done simply without the need to solve algebraic 
equations simultaneously. Applying the algorithm to 
eliminate iR2 and vR1 we get:  
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Substituting the above two equations into (5.1) and (5.2) 
respectively: 
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Equations (5.5) and (5.6) show that deriving the second 
order DE in the variable vC is more preferable since the 
derivative of v1 will not appear for this choice. 
 
There is another method to obtain equations (5.3) and 
(5.4) introduced in [15] and recommended by Tokad in 
[16]. In this method branch capacitors (chord inductors) 
are first replaced by voltage sources (current sources) 
thus obtaining a “resistive” network. Next the resistive 
network is solved for branch resistor voltages and chord 
resistor currents in terms of all the source variables. 
 

VI. STATE EQUATION FORMULATION 
 
State equations are introduced first by using the examples 
of Fig. 4.1 or Fig. 5.1. Choosing the network shown in 
Fig. 4.1 and putting the two differential relations (4.1) 
and (4.2) in the matrix form: dx/dt=Ax+Bu, we will get 
the state equation representation for the network as:   
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Next, to let the students see the similarity of the state 
equation representation and that of the second order DE 
the eigen values of the A matrix are related to the roots of 
the characteristic equation of the corresponding second 
order DE. After a few exercises the ground is set to 
introduce a general formulation procedure that would be 
applicable to a class of networks rather than to specific 
examples.  
 
The simplest class to consider would be the class of all 
RLC networks containing two-terminal independent 
voltage and/or current sources where the voltage sources 
do not form any circuits and the current sources do not 
form any cutsets. To simplify further, assume first that 
the class is restricted to networks where all capacitors and 
voltage sources can be included in a formulation tree T 
and that all inductors and current sources can be included 
in the cotree (T′) of T. This restriction can be removed 
later if time allows. With these restrictions the 
formulation procedure can be put into the following 
orderly steps: 
 



a) Select a formulation tree T such that all voltage 
sources and all capacitors are in T and all the current 
sources and all inductors are in the cotree of T. The tree 
and the cotree may contain some resistors. 
 
b) Write the fundamental circuit equations in the matrix 
form:        
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where Vbd, Vbc, Vbr are the branch voltage vectors of the 
voltage sources, branch capacitors and the branch 
resistors respectively, and Vcr, Vcl, Vcd are the voltage 
vectors of the chord resistors, chord inductors and the 
chord current sources respectively. Note that the voltage 
vector and consequently the fundamental circuit matrix 
are partitioned in accordance with the network 
classification.  
 
c) Write the fundamental cutset equations in the matrix 
form:  
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where Ibd, Ibc, Ibr are the branch current vectors of the 
voltage sources, branch capacitors and branch resistors 
respectively, and Icr, Icl, Icd are the chord current vectors 
of the chord resistors, chord inductors and the current 
sources respectively. Note that the current vector is 
partitioned similar to the voltage vector in (6.2). The A 
matrix is the negative transpose of the B matrix [2].  
 
d) Express the terminal equations of the branch 
capacitors and chord inductors in the matrix form: 
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e) Express the terminal equations of the branch and chord 
resistor in the matrix form: 
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f) From (6.2) and (6.3) express the vector {Ibc, Vcl} 
explicit in the branch voltage and chord current variables 
as:
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g) To eliminate the vector {Vbr, Icr} from (6.6) express 
the vector {Ibr, Vcr} explicit in the branch voltage and 
chord current variables using equations (6.2) and (6.3) 
again as: 
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Note that in (6.6) and (6.7) the minus signs have been 
included within the relevant sub matrices. 
 
h) Substitute (6.7) into (6.5) and express the vector {Vbr, 
Icr} explicitly in terms of the state variables and the 
independent source variables as:  
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In the process of obtaining (6.8), the inverse of the 
matrix:  
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has to be taken. This inverse always exists [3] for the 
class networks we are considering. The dimension of this 
matrix and its lack of sparsity is what may introduce 
some complications in hand formulation procedures. 
 
i) To get the final state equations substitute (6.8) into 
(6.6) combine terms and substitute the resulting equation 
into (6.4). 
 
This is a straightforward algorithm and can be applied to 
simple circuits easily in hand formulation, as the 
following example will demonstrate. Consider the 
network shown in Fig. 6.1a and the network graph and 
the selected formulation tree shown in Fig 6.1b.  

 
Fig6.1 (a) Network to demonstrate state formulation, (b) Network graph 
 
Fort he selected formulation tree, the f-circuit and f-cutset 
equations can be written as:  
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From (6.9) we can express the capacitor current and the 
inductor voltage explicitly in terms of the state variables 
{vC, iL}, the branch resistor voltage and chord resistor 
current {vR1, iR2} and the independent source variables 
{v1, i2} so that equation (6.6) for this example can be 
written as:  
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To eliminate {vR1, iR2} from the above equations we start 
from: 
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Premultiplying both sides of (6.11) with the coefficient 
matrix of the resistive components R1 and R2 we have:   
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                                                                       …….. (6.12)   
Solving for {vR1, iR2} from above and substituting into 
(6.10) and finally inserting the result into the terminal 
equations for C and L we will get the desired state 
equations: 
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VII. CONCLUSION 
 
A simple hand formulation procedure suitable for 
classroom presentations of state equation derivation 
emerges when terminal equations and topological 
relations are used as described above. With this approach 
the classical and tempting initiation of formulation by 
starting first with KVL (KCL) and aiming at an integral 
differential equation is avoided. Instead, the formulation 
procedure starts with the terminal relations for C and L in 
their differential form and then continues by eliminating 
branch capacitor currents and chord inductor voltages 
using the topological relations (KVL, KCL). It has also 
been shown that the new procedure can shed some light 
on the appearance of the source derivative terms in the 
final equations. Since this new procedures is a special 
case of general state formulation algorithm for the class 
of RLC networks as defined above it can easily be 
integrated into the first circuit course with 
straightforward generalizations. This was also 
demonstrated for the RLC class with minor restrictions. 
 
The restriction put on the capacitors and inductors can be 
removed if the time allows. The removal of such 
restrictions implies that the RLC networks may also 
contain branch inductors and/or chord capacitors. The 
same elimination procedure would also apply if we 
partition the voltage vector in (6.2) and the current vector 
in (6.3) such that they would include component Vbl and 

Icc respectively, describing the new topology. It is clear 
that for such cases the f-circuit and f-cutset matrices have 
to be partitioned accordingly and an extra step would be 
required to express Vbl and Icc explicit in terms of Vbc and 
Icl as well as the independent source variables deriving 
the network.      
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