
Design and Analysis of Random Number Generator for Implementation of
Genetic Algorithms using FPGA

Javad Frounchi Mohammad Hossein Zarifi Sanaz Asgari Far Hamed Taghipour

jfrounchi@tabrizu.ac.ir m_zarifi@tabrizu.ac.ir sanaz.asgarifar@gmail.com ha_taghipour1@yahoo.com

Microelectronic and Microsensor Research Lab, Faculty of Electrical and Computer Engineering, University of Tabriz,
Tabriz, Iran

Key words: Random Number Generator, Genetic Algorithm, Field Programmable Gate Array.

ABSTRACT

In this paper we designed a new random number generator
(RNG) based on LFSR. This random number generator can
be used in Bluetooth encryptions and genetic algorithm
implementation. The algorithm used to generate random
number realized using simple circuit and implemented on a
Virtex-4 LX25 FPGA from Xilinx. This designed block
indicated a good sequence random numbers which is used in
the genetic algorithm implementation for solving travailing
salesperson problem (TSP) on FPGA.

I. INTRODUCTION
Random number sequences can be found in a large
number of applications that include cryptography, genetic
algorithms, Bluetooth encryptions and neural networks.
Good random number generators are required to provide
true source of randomness in applications where one has
to model a physical process. For example, in a simulation
of a wireless communication system there are several
noise sources that need to be included. The most
commonly used is Additive White Gaussian Noise, but
there other analog impairments like phase noise, clock
jitter, etc.

A wide variety of ingenious methods have been designed
to generate random numbers. In computing, a hardware
random number generator is an apparatus that generates
random numbers from a physical process. Such devices
are often based on microscopic phenomena such as
thermal noise or the photoelectric effect or other quantum
phenomena. These processes are, in theory, completely
unpredictable, and the theory's assertions of
unpredictability are subject to experimental test. A
quantum-based hardware random number generator
typically contains an amplifier to bring the output of the
physical process into the macroscopic realm, and a
transducer to convert the output into a digital signal.
Hardware random number generators are often relatively
slow, and they may produce a biased sequence. Whether a
hardware random number generator is suitable for a

particular application depends on the details of both the
application and the generator.

Most generators are software based and generally fall into
one of these three categories:

- Linear Congruential Generator: Usually of the Form
 Xi = (aXi-1 + b) mod m, where a, b, and m are constants.
This random number generator requires integer recursion
thus it is expensive in hardware. Also, this generator is
efficiently predictable when the constants a, b and m are
known [1].
- Lagged Fibonacci Generator: Generally of the form
 Xi = (Xi-r⊗ Xi-s) mod m, where r, s and m are constants,
r > s, and ⊗ could be any of the following binary
operators, +, −, ×, xor. This generator requires the initial
data set X1, X2… Xn and depending on the choice of the
binary operator might require integer recursion [1].
- Linear Feedback Shift Register Generator: They are
based on the theory of primitive polynomials in the form
Xp + Xq + 1. Given such a primitive polynomial and p
binary digits, X1, X2… Xp-1, then Xk = Xk-p xor Xk-p+q.
This generator has been shown to exhibit lattice structures
in the random number sequence generated [1].

In this work we designed a new random number generator
by using LFSR generator which shows acceptable results
to be used in genetic algorithms implementation. We have
implemented our designed system on a Virtex-4 LX25
FPGA from Xilinx.

II. LFSR DESCRIPTION
A linear feedback shift register (LFSR) is a shift register
whose input bit is a linear function of its previous state.
The only linear functions of single bits are xor and
inverse-xor; thus it is a shift register whose input bit is
driven by the exclusive-or (xor) of some bits of the overall
shift register value. The initial value of the LFSR is called
the seed, and because the operation of the register is

deterministic, the sequence of values produced by the
register is completely determined by its current (or
previous) state. Likewise, because the register has a finite
number of possible states, it must eventually enter a
repeating cycle. However, a LFSR with a well-chosen
feedback function can produce a sequence of bits which
appears random and which has a very long cycle.

One of the two main parts of an LFSR is the shift register
(the other is the feedback function). A shift register is a
device whose identifying function is to shift its contents
into adjacent positions within the register or, in the case of
the position on the end, out of the register. The position
on the other end is left empty unless some new content is
shifted into the register. The feedback function in an
LFSR has several names: XOR, odd parity, sum modulo
2. The bits contained in selected positions in the shift
register are combined in some sort of function and the
result is fed back into the register's input bit. By
definition, the selected bit values are collected before the
register is clocked and the result of the feedback function
is inserted into the shift register during the shift, filling the
position that is emptied as a result of the shift.

An LFSR is one of a class of devices known as state
machines. The contents of the register, the bits tapped for
the feedback function, and the output of the feedback
function together describe the state of the LFSR. With
each shift, the LFSR moves to a new state. There is one
exception to this -- when the contents of the register are
all zeroes, the LFSR will never change state. For any
given state, there can be only one succeeding state. The
reverse is also true: any given state can have only one
preceding state. For the rest of this discussion, only the
contents of the register will be used to describe the state
of the LFSR. A state space of an LFSR is the list of all the
states the LFSR can be in for a particular tap sequence
and a particular starting value. Any tap sequence will
yield at least two state spaces for an LFSR. (One of these
spaces will be the one that contains only one state -- the
all zero one.) Tap sequences that yield only two state
spaces are referred to as maximal length tap sequences.
The state of an LFSR that is n bits long can be any one of
2 n different values. The largest state space possible for
such an LFSR will be 2 n - 1 (all possible values minus the
zero state). Because each state can have only once
succeeding state, an LFSR with a maximal length tap
sequence will pass through every non-zero state once and
only once before repeating a state.

For our application the best random number sequence is
one that is very uniform, has very little correlation effects,
requires minimal hardware, easy to use, and above all the
“random sequence” must be completely reproducible.
The Random number generator chosen for this study is
based on a one LFSR with the following connecting rule:
D1=Q8

D2=Q1
.
.
.
Dn=Q7

Where Q1,…,Q8 are the outputs and D1,..,D8 are the
inputs. As shown in Figure 1, the random number
generator is implemented using XOR and Dff. One of the
outputs, Q1, is XORed with the output from the leftmost
Dff, Q8. Then the last output is feedback into first Dff
input. This circuit counts through 28-1 different non-zero
bit patterns. With n flip-flops, 2n-1 different non-zero bit
pattern can be generated.

Figure 1. LFSR architecture

In general XORs are only ever 2-input and never connect
in series. Therefore the minimum clock period for this
circuit is T>T2-input XOR + clock overhead. The latency is
very little and independent of n.

This design can be used as a random number generator
that numbers appear in a random sequence repeats every
2n-1 patterns. Also can be used fast counter, if the
particular sequence of count value is not important such
as micro-code micro-pc.

Mathematical analysis of LFSR
It is known that a Linear Feedback Shift Register LFSR
associated with its characteristic polynomial G[x] of order
n can generate a very good random like binary variable of
periodicity 2n-1 [2]. Associating q independent LFSRs
generate a q bit variable Uq uniformly distributed over
{0, 1, 2... 2q-1}. The LFSR design in FPGA need only n
logic cells, each of them with its own register. Figure 2,
illustrates the LFSR structure called "one to many" with
the polynomial x5 + x2+1:

Figure 2. LFSR for X5 + X2 + 1

At every clock cycle, 4bits are used as outputs and
"shifted". For instance for the LFSR of Figure 2, t being

the clock period, the register x5 can be expressed as
x5(t)= x4(t-1) = x2(t-3)+x5(t-3) = x(t-4)+x +4 (t-4).

By considering operations every 4t, 4 virtual shift
operations are done in one clock cycle. This technique can
be easily coded in VHDL and generates almost no extra
FPGA logic cell.

III. RESULTS AND DISCUSSION
Figure 3, shows a schematic of the LFSR used in previous
works.

Figure 3. Logical Feedback Shift Register Random
Number Generator

In previously works, the structure of LFSR RNG using the
seed, have been studied. The obvious weakness of this
type of RNG is that sequential values fail the serial test
described by Knuth. At any time step t there is a 50%
probability that the value at time t +1 can be predicted. If
for an LFSR of length n at time t the value is v, then at
time t +1 the value will be v/2 or v=2/2 n-1. This is shown
in Figure 4, where pairs of values vt and vt+1 are plotted.
It can be seen that for any value vt there are only two
possible values of vt+1. Though the random number
generator runs in parallel with the main GP machine, it is
possible to access sequential values when creating an
initial program, or when choosing crossover points.
There is then a possibility of a potentially degrading bias
by using such an RNG [9].

Figure 4. Serial test of a simple LFSR RNG

The proposed RNG structure has been illustrated in Figure
1, it decreases predictability of next number and generates
exactly 2n-1 various random numbers. Figure 5 shows the
schematics of implemented structure on a Virtex-4 LX25
FPGA from Xilinx. The FPGA features 24,192 logic cell,
48 18*18-bit signed multipliers and 72 block Select
RAMs. The Xilinx ISE 8.1i has been used to implement
and synthesis the system.

Figure 5. Implemented structure on FPGA

Table 1 shows the utilization of hardware resources on the
chip. The floorplan of main system is shown in Figure 7
and RNG part is located. The remaining slices of the
FPGA have been used for the implementation of next
stages of genetic algorithms. The whole chip has been
simulated using ModelSim 6.0 to evaluate its performance
enhancement rate compared to the solving the TSP
problem on MATLAB using a 2.4 GHz Pentium-4 based
PC. The simulation results of the synthesized design of
RNG part are illustrated in Figure 6.

 Figure 6. Simulation results of RNG part of chip

Figure 7. Floorplan of the main system, RNG part located

Table 1. Utilization of hardware resources for RNG part

IV. CONCLUSION
Several different ways have already been examined to
increase the number of randomness of random number
generator. We proposed an RNG based on Field
Programmable Gate Array which was used in genetic
algorithms implementation that provides more
randomness numbers than the previous works. Parallel
generators of this kind can be used extensively to generate
more randomness numbers with long lengths.

REFERENCES
1. I.Vattulainen, K. Kankaala, J. Saarinen, and T. Ala-

Nissila, A Comparative study of pseudorandom
number generators, Computer Phys. Comm. 86
(1995) 209-226

2. E.R. Berlekamp, "Algebric Coding Theory",
McGraw-Hill

3. Paul Graham and Brent Nelson. Genetic algorithms
in software and in hardware-a performance analysis
of workstation and custom computing machine
implementations. In Kenneth L. Pocek and Jeffrey
Arnold, editors, Proceedings of the Fourth IEEE
Symposium of FPGAs for Custom Computing
Machines., Pages 216–225, Napa Valley, California,
April 1996. IEEE Computer Society Press.

4. Tsutomu Maruyama, Terunobu Funatsu, Minenobu
Seki, Yoshiki Yamaguchi, and Tsutomu Hoshino. A
Field-Programmable Gate-Array system for
Evolutionary Computation. IPSJ Journal, 40(5),
1999.

5. J. Ackermann, U. Tangen, B. Bodekker, J. Breyer, E.
Stoll, J.S. McCaskill, Parallel random number
generator for inexpensive configurable hardware
cells, Computer Phys. Comm 140(2001) 293-302

6. C. Aporntewan and P. Chongstitvatana. A Hardware
implementation of the compact genetic algorithm.
IEEE Congress on Evolutionary Computation, pages
624–629, May 2001.

7. Xilinx. Pseudo random number generator.
www.xilinx.com/xcell/xl35/xl35_44.pdf, December
2001.

8. Wikipedia, Psuedorandom Number Generators,
http://wikipedia.com/wiki/Pseudorandom_number_ge
nerator (2003)

9. Mustapha Abdulai, Inexpensive Parallel Random
Number Generator for Configurable Hardware 2003.

