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ABSTRACT 

In this paper we designed a new random number generator 
(RNG) based on LFSR. This random number generator can 
be used in Bluetooth encryptions and genetic algorithm 
implementation. The algorithm used to generate random 
number realized using simple circuit and implemented on a 
Virtex-4 LX25 FPGA from Xilinx. This designed block 
indicated a good sequence random numbers which is used in 
the genetic algorithm implementation for solving travailing 
salesperson problem (TSP) on FPGA. 
  

I. INTRODUCTION 
Random number sequences can be found in a large 
number of applications that include cryptography, genetic 
algorithms, Bluetooth encryptions and neural networks. 
Good random number generators are required to provide 
true source of randomness in applications where one has 
to model a physical process. For example, in a simulation 
of a wireless communication system there are several 
noise sources that need to be included. The most 
commonly used is Additive White Gaussian Noise, but 
there other analog impairments like phase noise, clock 
jitter, etc.  
 
A wide variety of ingenious methods have been designed 
to generate random numbers. In computing, a hardware 
random number generator is an apparatus that generates 
random numbers from a physical process. Such devices 
are often based on microscopic phenomena such as 
thermal noise or the photoelectric effect or other quantum 
phenomena. These processes are, in theory, completely 
unpredictable, and the theory's assertions of 
unpredictability are subject to experimental test. A 
quantum-based hardware random number generator 
typically contains an amplifier to bring the output of the 
physical process into the macroscopic realm, and a 
transducer to convert the output into a digital signal. 
Hardware random number generators are often relatively 
slow, and they may produce a biased sequence. Whether a 
hardware random number generator is suitable for a  
 

 
particular application depends on the details of both the 
application and the generator. 
 
Most generators are software based and generally fall into 
one of these three categories: 
 
- Linear Congruential Generator: Usually of the Form 
 Xi = (aXi-1 + b) mod m, where a, b, and m are constants. 
This random number generator requires integer recursion 
thus it is expensive in hardware. Also, this generator is 
efficiently predictable when the constants a, b and m are 
known [1]. 
- Lagged Fibonacci Generator: Generally of the form 
 Xi = (Xi-r⊗ Xi-s) mod m, where r, s and m are constants,   
r > s, and ⊗ could be any of the following binary 
operators, +, −, ×, xor. This generator requires the initial 
data set X1, X2… Xn and depending on the choice of the 
binary operator might require integer recursion [1]. 
- Linear Feedback Shift Register Generator: They are 
based on the theory of primitive polynomials in the form 
Xp + Xq + 1. Given such a primitive polynomial and p 
binary digits, X1, X2… Xp-1, then Xk = Xk-p xor Xk-p+q. 
This generator has been shown to exhibit lattice structures 
in the random number sequence generated [1]. 
 
In this work we designed a new random number generator 
by using LFSR generator which shows acceptable results 
to be used in genetic algorithms implementation. We have 
implemented our designed system on a Virtex-4 LX25 
FPGA from Xilinx. 
 

II. LFSR DESCRIPTION                       
A linear feedback shift register (LFSR) is a shift register 
whose input bit is a linear function of its previous state. 
The only linear functions of single bits are xor and 
inverse-xor; thus it is a shift register whose input bit is 
driven by the exclusive-or (xor) of some bits of the overall 
shift register value. The initial value of the LFSR is called 
the seed, and because the operation of the register is 



deterministic, the sequence of values produced by the 
register is completely determined by its current (or 
previous) state. Likewise, because the register has a finite 
number of possible states, it must eventually enter a 
repeating cycle. However, a LFSR with a well-chosen 
feedback function can produce a sequence of bits which 
appears random and which has a very long cycle. 
 
One of the two main parts of an LFSR is the shift register 
(the other is the feedback function). A shift register is a 
device whose identifying function is to shift its contents 
into adjacent positions within the register or, in the case of 
the position on the end, out of the register. The position 
on the other end is left empty unless some new content is 
shifted into the register. The feedback function in an 
LFSR has several names: XOR, odd parity, sum modulo 
2. The bits contained in selected positions in the shift 
register are combined in some sort of function and the 
result is fed back into the register's input bit. By 
definition, the selected bit values are collected before the 
register is clocked and the result of the feedback function 
is inserted into the shift register during the shift, filling the 
position that is emptied as a result of the shift. 

An LFSR is one of a class of devices known as state 
machines. The contents of the register, the bits tapped for 
the feedback function, and the output of the feedback 
function together describe the state of the LFSR. With 
each shift, the LFSR moves to a new state. There is one 
exception to this -- when the contents of the register are 
all zeroes, the LFSR will never change state. For any 
given state, there can be only one succeeding state. The 
reverse is also true: any given state can have only one 
preceding state. For the rest of this discussion, only the 
contents of the register will be used to describe the state 
of the LFSR. A state space of an LFSR is the list of all the 
states the LFSR can be in for a particular tap sequence 
and a particular starting value. Any tap sequence will 
yield at least two state spaces for an LFSR. (One of these 
spaces will be the one that contains only one state -- the 
all zero one.) Tap sequences that yield only two state 
spaces are referred to as maximal length tap sequences. 
The state of an LFSR that is n bits long can be any one of 
2 n different values. The largest state space possible for 
such an LFSR will be 2 n - 1 (all possible values minus the 
zero state). Because each state can have only once 
succeeding state, an LFSR with a maximal length tap 
sequence will pass through every non-zero state once and 
only once before repeating a state. 

For our application the best random number sequence is 
one that is very uniform, has very little correlation effects, 
requires minimal hardware, easy to use, and above all the 
“random sequence” must be completely reproducible. 
The Random number generator chosen for this study is 
based on a one LFSR with the following connecting rule: 
D1=Q8 

D2=Q1 
. 
. 
. 
Dn=Q7 
 
Where Q1,…,Q8 are the outputs and D1,..,D8 are the 
inputs. As shown in Figure 1, the random number 
generator is implemented using XOR and Dff. One of the 
outputs, Q1, is XORed with the output from the leftmost 
Dff, Q8. Then the last output is feedback into first Dff 
input. This circuit counts through 28-1 different non-zero 
bit patterns. With n flip-flops, 2n-1 different non-zero bit 
pattern can be generated. 
 

 
Figure 1. LFSR architecture 
 
In general XORs are only ever 2-input and never connect 
in series. Therefore the minimum clock period for this 
circuit is T>T2-input XOR + clock overhead. The latency is 
very little and independent of n.  
 
This design can be used as a random number generator   
that numbers appear in a random sequence repeats every 
2n-1 patterns. Also can be used fast counter, if the 
particular sequence of count value is not important such 
as micro-code micro-pc. 
 

Mathematical analysis of LFSR 
It is known that a Linear Feedback Shift Register LFSR 
associated with its characteristic polynomial G[x] of order 
n can generate a very good random like binary variable of 
periodicity 2n-1 [2]. Associating q independent LFSRs 
generate a q bit variable Uq uniformly distributed over 
{0, 1, 2... 2q-1}.  The LFSR design in FPGA need only n 
logic cells, each of them with its own register. Figure 2, 
illustrates the LFSR structure called "one to many" with 
the polynomial x5 + x2+1: 
 

 
Figure 2. LFSR for X5 + X2 + 1 
 
At every clock cycle, 4bits are used as outputs and 
"shifted". For instance for the LFSR of Figure 2, t being 



the clock period, the register x5 can be expressed as   
x5(t)= x4(t-1) = x2(t-3)+x5(t-3) = x(t-4)+x +4 (t-4).  
 
By considering operations every 4t, 4 virtual shift 
operations are done in one clock cycle. This technique can 
be easily coded in VHDL and generates almost no extra 
FPGA logic cell.                                                                                
 

III. RESULTS AND DISCUSSION 
Figure 3, shows a schematic of the LFSR used in previous 
works. 
 

 
Figure 3. Logical Feedback Shift Register Random 
Number Generator 
 
In previously works, the structure of LFSR RNG using the 
seed, have been studied. The obvious weakness of this 
type of RNG is that sequential values fail the serial test 
described by Knuth. At any time step t there is a 50% 
probability that the value at time t +1 can be predicted. If 
for an LFSR of length n at time t the value is v, then at 
time t +1 the value will be v/2 or v=2/2 n-1. This is shown 
in Figure 4, where pairs of values vt and vt+1 are plotted.  
It can be seen that for any value vt there are only two 
possible values of vt+1. Though the random number 
generator runs in parallel with the main GP machine, it is 
possible to access sequential values when creating an 
initial program, or when choosing crossover points.   
There is then a possibility of a potentially degrading bias 
by using such an RNG [9]. 

 
Figure 4. Serial test of a simple LFSR RNG 

The proposed RNG structure has been illustrated in Figure 
1, it decreases predictability of next number and generates 
exactly 2n-1 various random numbers. Figure 5 shows the 
schematics of implemented structure on a Virtex-4 LX25 
FPGA from Xilinx. The FPGA features 24,192 logic cell, 
48 18*18-bit signed multipliers and 72 block Select 
RAMs. The Xilinx ISE 8.1i has been used to implement 
and synthesis the system.  
 
 

 
Figure 5. Implemented structure on FPGA 
 
Table 1 shows the utilization of hardware resources on the 
chip. The floorplan of main system is shown in Figure 7 
and RNG part is located. The remaining slices of the 
FPGA have been used for the implementation of next 
stages of genetic algorithms. The whole chip has been 
simulated using ModelSim 6.0 to evaluate its performance 
enhancement rate compared to the solving the TSP 
problem on MATLAB using a 2.4 GHz Pentium-4 based 
PC. The simulation results of the synthesized design of 
RNG part are illustrated in Figure 6. 
 

   
   Figure 6. Simulation results of RNG part of chip 
 



 
       
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Floorplan of the main system, RNG part located 
 
 
Table 1. Utilization of hardware resources for RNG part 

 
 

 
 

 
 

IV. CONCLUSION 
Several different ways have already been examined to 
increase the number of randomness of random number 
generator. We proposed an RNG based on Field 
Programmable Gate Array which was used in genetic 
algorithms implementation that provides more 
randomness numbers than the previous works. Parallel 
generators of this kind can be used extensively to generate 
more randomness numbers with long lengths. 
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