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ABSTRACT 

In this paper, a signal processing method is proposed to 
establish the EMG signal—force relationship. Higher order 
frequency moments calculated from the power spectra of 
short-time signals are used as the characterizing features. An 
artificial neural network is trained for the estimation of the 
forces as a function of time. Validation results of the 
predicted muscle forces compared to the actual forces 
presented very encouraging performance. 
 
 

I. INTRODUCTION 
In this study a new signal processing technique is 
developed for establishing the EMG signal—force 
relationship. Because of the technical, anatomical and 
physiological factors that effect the electromyoraphy 
(EMG) signals, it is a challenging study to derive a 
relationship between EMG signals and force [1].  
 
There have been many researches on biomechanical and 
neuro-physiological properties of muscle systems, in 
order to define the relationship between the 
electromyography (EMG) signals, generated during 
muscular contraction, and variable dynamic movements   
[1,2,3,4]. However the relationship between the EMG 
signals and muscle contraction forces have not yet been 
fully described. Liu et al [1] were able to determine the 
muscle forces recorded from the cat soleus for a variety of 
locomotor conditions with an error rate of < 15 %, by 
using EMG signals.  Kent et al. [2], investigated the 
relation between EMG signal and foot wrist joint moment 
of a subject lying down by using artificial neural 
networks. Luh et al [3] achieved to estimate the joint 
moments, generated at elbows on isokinetic state. Wang 
and Buchanan [4] studied the estimation of joint moments 
from EMG signals using artificial neural network model.  
 
The need for the determination of a distinct relationship 
between EMG signals and force arises from the desire for 
improving the life conditions of patients who need 

artificial hand, arm, etc. Today, widely used hand 
prosthesis display some restrictions on open/grasp 
movement properties. Besides, many studies on designing 
artificial hands that are more flexible, and functional are 
still under investigation [5,6,7]. There are two main 
problems to be solved for construction of highly advanced 
hand prosthesis. First one is the mechanical design that 
will allow sufficient freedom of movement. The second 
one is the robust electronics that can handle a more 
complicated mechanical design. It is almost impossible to 
discuss a “dexterous prosthesis” without the solution of 
the above second problem.  
 
In our work, the signal–force relation is investigated by 
analyzing the EMG signals measured from the pectorialis 
major muscle under the effect of forces acquired from 
three subjects. To acquire data from both right and left 
arms simultaneously, a bi-manual manipulation of an 
object is considered. Surface EMG signals are recorded 
during anisometric and quasi-isotonic (slowly force-
varying) contractions of muscle. EMG signals are 
analyzed in a short-time manner to reveal their time-
varying characteristics. Higher order frequency moments 
calculated from the power spectra of short-time EMG 
segments are used as the characterizing features. The 
back-propagation, feed-forward artificial neural network 
is trained for the estimation of the force acting on  human 
arm tip. Validation results of the predicted muscle forces 
compared to the actual forces presented very encouraging 
performance with an average of root mean square 
difference (RMSD) error of < 15 %. 
 
 

II. MATERIAL AND METHOD  
 

The set-up used for carrying out the experiments during 
bi-manual manipulation of an object is shown in Fig. 1. 
The experimental set-up consists of a direct drive SCARA 
type robot manipulator and a handle-bar (Fig. 1). The 
robot manipulator consists of three links, all connected by 



rotational joints, is located on the table aligned with the 
subject. The distance between the robot base and the 
subject is set to 0.75 m, a distance enough for a 
comfortable workspace both for the subject and the robot 
manipulator. The robot arm tip is connected to a 40 cm 
handlebar at its center by a revolute joint. In this way the 
handlebar is coupled to the robot arm and becomes its 
actively controlled third link.  
 
Experiments were carried out by two right-handed healthy 
male subjects in age 25 and 35. The subjects were given 
sufficient information about the experiment and their 
consent were taken.  

During the experiment the subject was seated in front of a 
horizontal table and firmly grasps two handles on the 
handlebar. Shoulder movement of the subject was 
restrained, and the wrists were immobilized so that each 
arm can be treated as a two link manipulator consists of 
shoulder and elbow. The handlebar has three degrees of 
motion freedom (two translations and a rotation) and can 
have a floating motion in the horizontal plane formed by 
the subject’s arms. Four different target sets, and a 
reference position are specified on the table (Fig. 1).  Two 
of the target sets were used for the motion in sagittal plane 
and the other two were used for the motion parallel to the 
frontal plane. These motions are named as; 
 
1 2 : forward,  1 3 : backward, 
1 4 : rightward  and 1 5 : leftward. 
 
Subject is required to move the handlebar from the 
reference to the specified target. Each  motion from the 
reference point to the specied target is divided into three 
phases as shown in Fig. 2; proceed phase, maintain phase 

and retreat phase. Using a metronome, the subject is 
instructed by a tone signal (a beep) to make an advancing 
motion of δ= 50 mm towards the visually guided desired 

target, and maintain the object there for 4 seconds until 
the next tone, and then make the retreating motion back to 
the reference position. In addition to the maintain phase, 
data is also collected for 2 seconds before the proceed and 
after the retreat phases during which  the subject relaxes. 
Proceed and retreat phases of the motion are 
instantaneous and the time elapsed during these phases is 
in general very short. These motions are repeated 10 times 
for each subject. 
 
Interaction forces between the human arms and the 
handlebar and between the manipulator and the handlebar 
were measured by two six-axis force/torque sensors 
located on the handlebar. The two EMG amplifiers, used 
in experiments, has four channels each as input, which 
enables the record of EMG signals from four seperate  
muscles. In experiments, EMG signals used for 
measurement are recorded from biceps, triceps, pectorialis 
and trapezius muscles which are most actively utilized 
when the anisometric contraction state of arm, parallel to 
ground, is considered. While recording EMG signals, in 
order to achieve a good contact between the electrodes 
and muscles, which is a must for healthy signal 
acquisition, a special conducting gel is applied. As it is 
expected that there are too many parameters to affect the 
EMG signal behaviours, careful measurement is required.  
For example, to avoid crosstalk effect, the electrodes must 
be installed exactly on the center of muscles.  
 
Detected EMG signals are applied to a filter that has 20 
Hz lower and 200 Hz upper frequency cut-offs. The 
sampling frequency of signals is 500 Hz.  
 

 
III. ANALYSIS OF EMG SIGNALS 

 
In order to characterize and classify EMG signals with 
non-stationary characteristics, simple time domain 
methods, such as absolute average value and effective 
peak value, are proposed in the literature [1]. The reason 
for using those methods is to be able to extract features 
that will allow us to classify and characterize EMG signal. 
However, when using above methods, signal processing 
operations which can harm/change the features of the 

Reference :  1 
Targets :  2, 3, 4, 5 

 

Figure1. Experimental set-up for EMG signals 
measurements [12] 
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EMG signals that involve the functional properties of 
corresponding muscle, must be avoided. It is therefore 
necesseary to employ correct methods for the analysis of 
EMG signals, in order to relate forces to signal features. 
 
Instead of  training  time-domain EMG sequences using  
artificial neural network (ANN) [2,8],  here we propose to 
use higher-order frequency moments derived from power 
spectrum of EMG signals. First, the power spectra, P(ω) 
of overlapping EMG segments are estimated by using 
periodogram approach [9]. The periodogram estimate of 
the power spectral density of a random signal x(t) with a 
time duration of T  is given by:  
 

2)(1)( ωω X
T

Px =     (1) 

 
where X(ω) denotes the Forurier transform of x(t). In 
statistical mean, periodogram estimation converges to 
signals power spectrum of random process. In our 
implementation, Discrete Fourier Transform (DFT) is 
used to calculate periodogram estimate of windowed 
signals. EMG signal x(n),  0 ≤ n ≤ N-1  is first multiplied 
by a sliding window to generate overlapping segments of 
the signal: 
 

)()()( mLnwnxnxm −=  m = 0,1,2,... (2) 
 
where L is the amount of window shift which is taken as 
1/4 of the effective window length. Using short-time 
overlapping segments to analyze the frequency content of 
EMG signal allows us to tract the time-variations in the 
signal due to change of force better than taking the whole 
spectrum. Then the DFT, Xm(k), of short-time signal xm(n) 
is calculated, and the power spectral estimate is obtained: 
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Px(ω) contains enough information to characterize the 
EMG signal and it is also used in previous studies [10]. 
However, for a signal of length N, it is required to 
calculate an N sample power spectral estimate, which 
means higher number of features and higher 
computational burden. Instead of the whole power 
spectrum, using a few features extracted from it will be a 
computational advantage [11]. In our proposed method, 
after power spectrum estimation for the overlapping 
segments of EMG signal, higher order frequency  
moments are calculated from and used as the 
characterizing features. Higher order moments carries the 
higher order statistical information of a random signal 
[11] and can be calculated in time and in frequency 
domain for a signal x(t) as follows: 
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Here, 〉〈 jω  is the jth order higher order frequency 
moment and Px(ω) indicates the density function of x(t) in 
frequency, 〉〈 it  is the i'th order time-moment and finally 

2
)()( txtPx =  is the energy density function of x(t) in 

time. 
 

IV. ESTIMATION OF FORCES FROM EMG 
FREQUENCY MOMENTS 

 
In this study, an ANN which has one input layer, two 
hidden layers, and one output layer was used (Fig. 3). The 
ANN is trained using spectral moments of the overlapping 
EMG segments for estimating and tracking the force as a 
function of time.   
 
In the network model, one input layer, two hidden layers, 

and one output layer have 149, 10 , 5, and 1 neuron, 
respectively. Log-sigmoid transfer function is used as the 
transfer function for training. 
 
 

V. SIMULATION RESULTS 
 
Surface EMG signals recorded from the pectorialis major 
muscle of three subjects under the effect of different 
forces recorded during anisometric and quasi-isotonic 
contractions are used in our experiments. Signals with 8 
sec. time duration, sampled at 500 Hz. sampling rate are 
analyzed using a sliding and overlapping Hamming 
window for 150 segments. Hence the spectral moments 

〉〈 jω   for j=0,1,2,3 of these overlapping segments are 
calculated and used to train the neural network.  
 
The results from validation were evaluated by RMSD of 
the actual forces )(nfa  and predicted )(nf  forces. The 
value of RMSD is calculated as follows [13]: 

Figure 3. Artificial Neural Network Model 
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Figure 5-a: 1 2 forward motion 

Figure 5-b: 1 3 backward motion

Figure 4-a: 1 2 forward motion 

Figure 4-b: 1 3 backward motion 

Figure 4-c: 1 4 rightward motion 

Figure 4-d: 1 5 leftward motion 
Figure 4.  Subject I tests: comparison of the estimated 

forces (dashed lines) with the actual forces (solid lines). 
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Validation results of the predicted forces against the 
actual forces which are measured using force sensors, as 
explained in section II, presented very successful 
performance for both subjects as shown in Table I. The 
values in the table show the average of 10 test results 
from each arm. The results are obtained to be less than 15 
% on the average.  
 
 
Table I: Mean of the RMS errors 
 

 1 2 
forward 

1 3  
backward 

1 4  
rightward   

1 5  
leftward 

Subject RMS error 
(%) 

RMS error 
(%) 

RMS error 
(%) 

RMS error 
(%) 

1 20 20 8.2 12.1 
2 10.2 14.4 11.8 13.1 

  
 
In Figure 4 and Figure 5, examples on the comparison of 
the predicted and measured forces are presented. It can be 
observed from the figures that we are able to estimate the 
actual forces using our proposed method with outstanding 
performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 5-c: 1 4 rightward motion 

Figure 5-d: 1 5 leftward motion 
Figure 5.  Subject II tests: comparison of the estimated 
forces (dashed lines) with the actual forces (solid lines).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                           
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

VI. CONCLUSIONS 
 
From the results of this study, it can be concluded that 
spectral moments might be successfully used for 
characterizing EMG signals and establishing a relation to 
the force. Our results show that the proposed method is 
able to predict the applied forces with less than 15 % 
RMS error which is considered excellent value in the 
literature [1,14]. Furthermore, the results can be used in 
the design and control of active arm prosthesis [6,7] for 
the patients with amputated arms from the elbow. 
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