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Abstract- In this paper, the chaos synchronization of two 
identical fractional order time delay system (One Master-
Transmitter, other Slave-Receiver) has been achieved for 
different initial conditions. For achieving synchronization 
between two systems, a proportional controller has been 
designed by using active control method. Efficiency of the 
controller designed has been tested using modified Mikhailov 
stability criterion and its appropriate gain parameter has been 
selected. The obtained results have been verified by the time 
domain simulations of the system.   
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1. Introduction 
                                                                
     In 1990, after Pecora and Carroll showed that a chaotic 
system can be synchronized [1], because chaos is sensitive 
dependence on initial conditions and has unpredictable 
behaviors, chaos synchronization has been used in secure 
communication systems [2-4]. Therefore, synchronization of 
different chaotic systems has been achieved by various methods 
[5-7]. In addition, achievement of chaos synchronization of the  
fractional order chaotic systems with [8-9] and without delay 
[10-11] have been became a research topic.  
     Fractional order model of system given in [12] was obtained 
in [13-14] and it was shown that the model exhibits chaotic 
behavior. This fractional order system is defined the delayed 
fractional order differential equation with one dimension as 
follow:  
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where, q fractional order (0<q<1),  δ and ε positive system 
parameters, τ is constant time delay (xτ =x(t-τ) and τ∈R+).  
System defined in Eq. (1) can exhibit chaotic behavior 
according to the system parameters.  
     Chaos synchronization of time delay system which integer 
order model of Eq. (1) and given in [12] has been performed in 
[6]. In this paper, a proportional controller has been proposed 

via active control method, which is given in [5], for chaos 
synchronization in two identical chaotic fractional order time 
delay system, one is  Master (Transmitter) and other is Slave 
(Receiver), given in Eq.(1). In addition, with help of the 
modified Mikhailov stability criterion which is tested the 
stability of the fractional order linear system with delay [15], 
appropriate gain values of the controller has been determined. 
This method also has been used for bifurcation analysis of the 
fractional order nonlinear system with delay [16]. After this 
section, in Section 2, the required controller for the system 
synchronization has been specified via active control method 
and its modified Mikhailov stability function has been obtained. 
Section 3 has presented the computation of the controller gain at 
some system parameter. The results obtained in previous section 
have been verified by the time domain simulations in Section 4 
and finally, in Section 5, the results have been discussed.     
 

2. Synchronization of the System via Active Control 

     Fig. 1 presents two identical chaotic fractional order time 
delay system for synchronization via active control. Error 
dynamic between the Master and Slave system should be 
obtained.  

 
Fig. 1. Block diagram of the chaos synchronization.  
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Equations (2) and (3) define Master system and Slave system 
with control function respectively. 
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where μ(t) is control function. The expression defined error 
dynamic of  two identical system is obtained as Eq. (4). 
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( )33 )()()()( ms xxtVt ττεμ −+=   , the error dynamic can be 
expressed as follow: 

( ) ( )q V tτ τδΔ = Δ +                                                                   (5)  

If controller is chosen as τΔ−= KtV )( ,  Eq. (5)  transform 

following form. 

ττ δ Δ−=Δ )()( Kq                                                                      (6) 

The characteristic equation of the error dynamic obtained in Eq. 
(6) is in transcendental fractional order form and its roots give 
the poles of the error dynamic. For achieving synchronization of 
the chaotic system, the error between two systems should go to 
zero. The roots of Eq. (7), the poles of error dynamic, should be 
left half of s-plane for this. 
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     After the gain value Kc, the error dynamic is critical stable at 
this parameter, is computed for s=jω, using the modified 
Mikhailov stability criterion given in [15-16], range of 
proportional gain K can be determined. The modified Mikhailov 
stability function gives in Eq. (8) for this characteristic equation.  
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where a0 is coefficient of term sq in Eq. (7). Note that the 
denominator of Eq. (8) is stable for c>0. Equation (8) can be 
plotted in Matlab environment from ω=0 to ω=∞ for different 
system parameters and time delay values. This is called the 
modified Mikhailov stability plot. Then, according to the 
obtained critical gain, Kc, range of the gain K can be determined. 

3. Case Study 
      
     In this section, the synchronization of two identical systems 
given in Eq. (2) and (3) has been carried out by using presented 
previous section for different initial conditions.  For this 
purpose, the system parameters, which is exhibited chaotic 
behavior given in [13], have been chosen as q=0.9, δ=ε=1 and 
τ=2s. If we substitute s=jω into characteristic equation for given 
system parameters,  with help of the Eq. (9), Eq. (7) becomes as 
presented in Eq. (10), which has real and imagine parts.   
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Kc gain values provide to Eq. (10) as follow:  
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     Kc1=1 and Kc2=1.876 have been obtained for the given 
system parameters. The plot of the expression given in Eq. (8) 
can be determined the poles of the error dynamic on right side 
half of s-plane. Fig. 2 shows the modified Mikhailov stability 
plots (for a0=1 and c=10) of the error dynamic for different gain 
values K.  
 

Im
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Fig. 2. The modified Mikhailov stability plot for q=0.9, δ=ε=1, 
τ=2s. a) K=0.8, b) K=1.2 , c) K=1.6 and d) K=2.  
 
     As seen Fig. 2, because modified Mikhailov stability plot 
don’t close the origin, the location of the poles is left side half of 
s-plane for gain values 1<K<1.876.   This means that the Slave 
system will follow the Master system after the transient response 
of the error dynamic. On the other hand,  because modified 
Mikhailov stability plot closes the origin, there are the poles on 
right side half of s-plane for gain values K <1 and K >1.876.  
This means that the error dynamic is unstable and the 
synchronization between two systems cannot be achieved.   
 

4. Simulation Results 

 
     This section presents the time domain simulations of two 
identical fractional order time delay chaotic systems using 
different proportional controllers given previous section on the 
Matlab/Simulink. For this aim, while the initial condition of 
Master system is chosen x0m=0.1, the initial condition of Slave 
system is chosen x0s=0.9.  The controller provided 
synchronization has been started up at t=30 s in all of the 
performed time-domain simulations. Fig. 3 shows the time 
response of Master and Slave system, and the error for K=1.2 
and 1.6, which are the stable gain values of the proportional 
controller, and K=0.8 and 2, which are the unstable gain values 
of the proportional controller.  
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Fig. 3. The time domain simulation results for  q=0.9, δ=ε=1 ve 
τ=2 s  output of the Master and Slave systems, and their error  
a) K=0.8, b) K=1.2, c) K=1.6 and d) K=2 ((−) Master system 
and (---) Slave system). 
 
As seen in Fig. 3, the error dynamic is stable for gain values 
1<K<1.876 as predicted previous section.  Thus,   the 
synchronization of two chaotic systems can be succeeded for 
this range of proportional controller gain. Conversely, the error 
dynamic is unstable for gain values K <1 and K >1.876. Note 
that the error of the Master-Slave system with proportional gain 
value K=0.8 increases exponentially. This means that the error 
dynamic has unstable pole on the real axis of s-plane. For 
controller gain value K=2, the error increases with oscillation. 
That is, the error dynamic has complex conjugate unstable poles 
on the s-plane.   
 

5. Conclusions 
 
     This paper has presented the synchronization of two identical 
fractional order time delay chaotic systems given in Eq. (1) for 
different initial conditions. The proportional controller has been 
designed via active control method to provide the 
synchronization. Using the modified Mikhailov stability 
criterion, which is graphical-based method, gain values of the 
proportional controller have been determined.   The 
synchronization can be achieved at the range of K=(1, 1.876)  
for fractional system order, q=0.9. The designed controller has 
been verified by the time domain simulation results.  
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